mirror of https://github.com/llvm/torch-mlir
135 lines
4.7 KiB
C++
135 lines
4.7 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
int64_t Torch::toPositiveDim(int64_t dim, int64_t inputRank) {
|
|
return dim >= 0 ? dim : dim + inputRank;
|
|
}
|
|
|
|
bool Torch::isValidDim(int64_t dim, int64_t inputRank) {
|
|
return dim >= 0 && dim < inputRank;
|
|
}
|
|
|
|
llvm::Optional<int64_t>
|
|
Torch::matchLegalConstantIndexIntoListOfSize(Value v, int64_t length) {
|
|
int64_t dim;
|
|
if (!matchPattern(v, m_TorchConstantInt(&dim)))
|
|
return llvm::None;
|
|
dim = toPositiveDim(dim, length);
|
|
if (!isValidDim(dim, length))
|
|
return llvm::None;
|
|
return dim;
|
|
}
|
|
|
|
bool Torch::getListConstructElements(Value v, SmallVectorImpl<Value> &elems) {
|
|
auto listConstruct = v.getDefiningOp<PrimListConstructOp>();
|
|
if (!listConstruct)
|
|
return false;
|
|
elems = llvm::to_vector<4>(listConstruct.elements());
|
|
return true;
|
|
}
|
|
|
|
torch_upstream::ScalarType Torch::getScalarTypeForType(Type type) {
|
|
if (type.isa<Float32Type>())
|
|
return torch_upstream::ScalarType::Float;
|
|
if (type.isa<Float64Type>())
|
|
return torch_upstream::ScalarType::Double;
|
|
if (type.isSignedInteger(64))
|
|
return torch_upstream::ScalarType::Long;
|
|
if (type.isSignedInteger(32))
|
|
return torch_upstream::ScalarType::Int;
|
|
if (type.isSignlessInteger(1))
|
|
return torch_upstream::ScalarType::Bool;
|
|
if (type.isBF16())
|
|
return torch_upstream::ScalarType::BFloat16;
|
|
if (type.isF16())
|
|
return torch_upstream::ScalarType::Half;
|
|
llvm::report_fatal_error("unhandled type for getScalarTypeForType");
|
|
}
|
|
|
|
Type Torch::getTypeForScalarType(
|
|
MLIRContext *context, torch_upstream::ScalarType dtypeInt,
|
|
mlir::IntegerType::SignednessSemantics signedness) {
|
|
switch (dtypeInt) {
|
|
case torch_upstream::ScalarType::Float:
|
|
return Float32Type::get(context);
|
|
case torch_upstream::ScalarType::Double:
|
|
return Float64Type::get(context);
|
|
case torch_upstream::ScalarType::Long:
|
|
return IntegerType::get(context, 64, signedness);
|
|
case torch_upstream::ScalarType::Int:
|
|
return IntegerType::get(context, 32, signedness);
|
|
case torch_upstream::ScalarType::Bool:
|
|
return IntegerType::get(context, 1);
|
|
case torch_upstream::ScalarType::BFloat16:
|
|
return mlir::FloatType::getBF16(context);
|
|
case torch_upstream::ScalarType::Half:
|
|
return mlir::FloatType::getF16(context);
|
|
default:
|
|
return Type();
|
|
}
|
|
}
|
|
|
|
Type Torch::getTorchTypeForScalarType(MLIRContext *context,
|
|
torch_upstream::ScalarType dtypeInt) {
|
|
switch (dtypeInt) {
|
|
case torch_upstream::ScalarType::Double:
|
|
return Torch::FloatType::get(context);
|
|
case torch_upstream::ScalarType::Long:
|
|
return Torch::IntType::get(context);
|
|
default:
|
|
llvm::report_fatal_error(
|
|
"Unsupported scalar type to Torch type conversion");
|
|
}
|
|
}
|
|
|
|
Value Torch::getDtypeIntValueForType(PatternRewriter &rewriter, Location loc,
|
|
Type dtype) {
|
|
int intType = (int)getScalarTypeForType(dtype);
|
|
return rewriter.create<ConstantIntOp>(loc,
|
|
rewriter.getI64IntegerAttr(intType));
|
|
}
|
|
|
|
// Helper to convert a tensor to a specific scalar type.
|
|
Value Torch::convertTensorToDtype(PatternRewriter &rewriter, Location loc,
|
|
Value input, Type dtype) {
|
|
BaseTensorType origType = input.getType().cast<BaseTensorType>();
|
|
Type newType = origType.getWithSizesAndDtype(origType.getSizes(), dtype);
|
|
// `convertIntVal` contains the corresponding integer for the dtype which is
|
|
// used by the aten.to.dtype op.
|
|
Value convertIntVal = getDtypeIntValueForType(rewriter, loc, dtype);
|
|
Value falseVal = rewriter.create<ConstantBoolOp>(loc, false);
|
|
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
|
|
Value converted = rewriter.create<AtenToDtypeOp>(
|
|
loc, newType, input, convertIntVal, falseVal, falseVal, noneVal);
|
|
return converted;
|
|
}
|
|
|
|
bool Torch::isBuiltInType(Type type) {
|
|
return isa<BuiltinDialect>(type.getDialect());
|
|
}
|
|
|
|
int Torch::getTensorRank(Value tensor) {
|
|
int tensorRank = -1;
|
|
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
|
|
|
|
if (tensorType.hasSizes()) {
|
|
ArrayRef<int64_t> tensorShape = tensorType.getSizes();
|
|
tensorRank = tensorShape.size();
|
|
}
|
|
return tensorRank;
|
|
}
|