mirror of https://github.com/llvm/torch-mlir
165 lines
7.2 KiB
C++
165 lines
7.2 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h"
|
|
#include "mlir/Conversion/Passes.h"
|
|
#include "mlir/Dialect/Func/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Linalg/Passes.h"
|
|
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
#include "torch-mlir/Conversion/TorchToSCF/TorchToSCF.h"
|
|
#include "torch-mlir/Conversion/TorchToArith/TorchToArith.h"
|
|
#include "torch-mlir/Conversion/TorchToTMTensor/TorchToTMTensor.h"
|
|
#include "torch-mlir/Conversion/TorchToTosa/TorchToTosa.h"
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO
|
|
#include "mlir-hlo/Dialect/mhlo/transforms/passes.h"
|
|
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h"
|
|
#endif
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::tosa;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pass registration
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
#define GEN_PASS_REGISTRATION
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/Passes.h.inc"
|
|
} // end namespace
|
|
|
|
void mlir::torch::registerTorchConversionPasses() {
|
|
::registerPasses();
|
|
mlir::PassPipelineRegistration<Torch::TorchLoweringPipelineOptions>(
|
|
"torch-backend-to-linalg-on-tensors-backend-pipeline",
|
|
"Pipeline lowering torch backend contract to linalg-on-tensors backend "
|
|
"contract.",
|
|
TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline);
|
|
|
|
mlir::PassPipelineRegistration<Torch::TorchLoweringPipelineOptions>(
|
|
"torch-backend-to-tosa-backend-pipeline",
|
|
"Pipeline lowering torch backend contract to TOSA backend "
|
|
"contract.",
|
|
TorchConversion::createTorchBackendToTosaBackendPipeline);
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO
|
|
mlir::PassPipelineRegistration<Torch::TorchLoweringPipelineOptions>(
|
|
"torch-backend-to-mhlo-backend-pipeline",
|
|
"Pipeline lowering torch backend contract to MHLO backend "
|
|
"contract.",
|
|
TorchConversion::createTorchBackendToMhloBackendPipeline);
|
|
#endif
|
|
}
|
|
|
|
void TorchConversion::createTorchBackendToLinalgOnTensorsBackendPipeline(
|
|
OpPassManager &pm, const Torch::TorchLoweringPipelineOptions &options) {
|
|
// Check some invariants to catch errors in a clear way.
|
|
pm.addPass(
|
|
TorchConversion::createVerifyInvariantsBeforeBackendLoweringPass());
|
|
|
|
// Lower to linalg + guards which is the input to codegen backends.
|
|
// We do this first as it tends to involve pattern-matching against constants,
|
|
// (e.g. dimensions which must be constant in a ranked programming model)
|
|
// and those constants get somewhat obscured by TorchToArith.
|
|
pm.addNestedPass<func::FuncOp>(createConvertTorchToTMTensorPass());
|
|
pm.addNestedPass<func::FuncOp>(createConvertTorchToLinalgPass());
|
|
pm.addNestedPass<func::FuncOp>(createConvertTorchToSCFPass());
|
|
pm.addNestedPass<func::FuncOp>(createConvertTorchToArithPass());
|
|
pm.addNestedPass<func::FuncOp>(memref::createExpandOpsPass());
|
|
|
|
if (options.optimize) {
|
|
// Clean up any non-canonical code introduced above..
|
|
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
|
|
// Resolve `dim` ops on tensors (which currently live in the `memref`
|
|
// dialect for some reason -- we don't have memrefs at this level).
|
|
pm.addNestedPass<func::FuncOp>(
|
|
memref::createResolveShapedTypeResultDimsPass());
|
|
// The resolution of `dim` ops tends to create identical ops. CSE them.
|
|
pm.addNestedPass<func::FuncOp>(createCSEPass());
|
|
}
|
|
|
|
// Finish the type conversion from `torch` types to the types of the
|
|
// linalg-on-tensors backend contract.
|
|
pm.addPass(TorchConversion::createFuncBackendTypeConversionPass());
|
|
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
|
|
pm.addNestedPass<func::FuncOp>(
|
|
TorchConversion::createFinalizingBackendTypeConversionPass());
|
|
|
|
// Verify that we have lowered to the form that linalg on tensors backends
|
|
// expect. This fails compilation (signalPassFailure) if the IR is not in the
|
|
// correct form.
|
|
pm.addPass(TorchConversion::createVerifyLinalgOnTensorsBackendContractPass());
|
|
}
|
|
|
|
void TorchConversion::createTorchBackendToTosaBackendPipeline(
|
|
OpPassManager &pm, const Torch::TorchLoweringPipelineOptions &options) {
|
|
// Check some invariants to catch errors in a clear way.
|
|
pm.addPass(
|
|
TorchConversion::createVerifyInvariantsBeforeBackendLoweringPass());
|
|
|
|
pm.addNestedPass<func::FuncOp>(createConvertTorchToTosaPass());
|
|
// Perform rank broadcasting so TosaToLinalg pass works
|
|
pm.addNestedPass<func::FuncOp>(createTosaMakeBroadcastablePass());
|
|
|
|
if (options.optimize) {
|
|
// Clean up any non-canonical code introduced above..
|
|
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
|
|
// The resolution of `dim` ops tends to create identical ops. CSE them.
|
|
pm.addNestedPass<func::FuncOp>(createCSEPass());
|
|
}
|
|
|
|
// Finish the type conversion from `torch` types to the types of the
|
|
// TOSA backend contract.
|
|
pm.addPass(TorchConversion::createFuncBackendTypeConversionPass());
|
|
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
|
|
pm.addNestedPass<func::FuncOp>(
|
|
TorchConversion::createFinalizingBackendTypeConversionPass());
|
|
|
|
// Verify that we have lowered to the form that TOSA backends
|
|
// expect. This fails compilation (signalPassFailure) if the IR is not in the
|
|
// correct form.
|
|
pm.addPass(TorchConversion::createVerifyTosaBackendContractPass());
|
|
}
|
|
|
|
#ifdef TORCH_MLIR_ENABLE_MHLO
|
|
void TorchConversion::createTorchBackendToMhloBackendPipeline(
|
|
OpPassManager &pm, const Torch::TorchLoweringPipelineOptions &options) {
|
|
// Check some invariants to catch errors in a clear way.
|
|
pm.addPass(
|
|
TorchConversion::createVerifyInvariantsBeforeBackendLoweringPass());
|
|
|
|
pm.addNestedPass<func::FuncOp>(createConvertTorchToMhloPass());
|
|
|
|
if (options.optimize) {
|
|
// Clean up any non-canonical code introduced above..
|
|
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
|
|
// The resolution of `dim` ops tends to create identical ops. CSE them.
|
|
pm.addNestedPass<func::FuncOp>(createCSEPass());
|
|
}
|
|
|
|
// Convert CHLO ops to MHLO ops
|
|
pm.addNestedPass<func::FuncOp>(mhlo::createChloLegalizeToHloPass());
|
|
if (options.optimize) {
|
|
// Clean up any non-canonical code introduced above..
|
|
pm.addNestedPass<func::FuncOp>(createCanonicalizerPass());
|
|
// The resolution of `dim` ops tends to create identical ops. CSE them.
|
|
pm.addNestedPass<func::FuncOp>(createCSEPass());
|
|
}
|
|
|
|
// Finish the type conversion from `torch` types to the types of the
|
|
// MHLO backend contract.
|
|
pm.addPass(TorchConversion::createFuncBackendTypeConversionPass());
|
|
pm.addNestedPass<func::FuncOp>(
|
|
TorchConversion::createFinalizingBackendTypeConversionPass());
|
|
}
|
|
#endif |