mirror of https://github.com/llvm/torch-mlir
1043 lines
39 KiB
C++
1043 lines
39 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToStablehlo/TorchToStablehlo.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "PopulatePatterns.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "stablehlo/dialect/ChloOps.h"
|
|
#include "stablehlo/dialect/StablehloOps.h"
|
|
#include "torch-mlir/Conversion/TorchToStablehlo/StablehloLegalizeUtils.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
using namespace mlir::torch::torch_to_stablehlo;
|
|
|
|
static Value createInitialValueForReduceOp(Operation *op, Type elementTy,
|
|
PatternRewriter &rewriter) {
|
|
auto constType = RankedTensorType::get({}, elementTy);
|
|
if (isa<AtenSumOp, AtenSumDimIntListOp, AtenFrobeniusNormDimOp,
|
|
AtenLinalgVectorNormOp>(op)) {
|
|
if (isa<mlir::FloatType>(elementTy)) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APFloat::getZero(
|
|
cast<mlir::FloatType>(elementTy).getFloatSemantics(),
|
|
/*negative=*/false)});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (isa<mlir::IntegerType>(elementTy) &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType, {APInt::getZero(elementTy.getIntOrFloatBitWidth())});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
|
|
if (isa<AtenAmaxOp, AtenMaxOp, AtenMaxDimOp, AtenArgmaxOp>(op)) {
|
|
if (isa<mlir::FloatType>(elementTy)) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType,
|
|
{APFloat::getInf(cast<mlir::FloatType>(elementTy).getFloatSemantics(),
|
|
/*negative=*/true)});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (isa<mlir::IntegerType>(elementTy) &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType,
|
|
{APInt::getSignedMinValue(elementTy.getIntOrFloatBitWidth())});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
|
|
if (isa<AtenAminOp, AtenMinOp>(op)) {
|
|
if (isa<mlir::FloatType>(elementTy)) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType,
|
|
{APFloat::getInf(cast<mlir::FloatType>(elementTy).getFloatSemantics(),
|
|
/*negative=*/false)});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (isa<mlir::IntegerType>(elementTy) &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
auto constAttr = DenseElementsAttr::get(
|
|
constType,
|
|
{APInt::getSignedMaxValue(elementTy.getIntOrFloatBitWidth())});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
|
|
if (isa<AtenProdOp>(op)) {
|
|
if (isa<mlir::FloatType>(elementTy)) {
|
|
APFloat one(cast<mlir::FloatType>(elementTy).getFloatSemantics(), 1);
|
|
auto constAttr = DenseElementsAttr::get(constType, one);
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
} else if (isa<mlir::IntegerType>(elementTy) &&
|
|
elementTy.getIntOrFloatBitWidth() != 8) {
|
|
APInt one(elementTy.getIntOrFloatBitWidth(), 1);
|
|
auto constAttr = DenseElementsAttr::get(constType, one);
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
}
|
|
|
|
if (isa<AtenAllOp>(op)) {
|
|
auto constAttr = DenseElementsAttr::get(constType, {APInt(1, 1)});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
|
|
if (isa<AtenAnyOp>(op)) {
|
|
auto constAttr = DenseElementsAttr::get(constType, {APInt(1, 0)});
|
|
return rewriter.create<stablehlo::ConstantOp>(op->getLoc(), constType,
|
|
constAttr);
|
|
}
|
|
|
|
op->emitError("unimplemented lowering in "
|
|
"createInitialValueForReduceOp");
|
|
return nullptr;
|
|
}
|
|
|
|
static Value createReduceOpWithSingleRegionOp(Operation *op, Value input,
|
|
Type outTy,
|
|
ArrayRef<int64_t> dims,
|
|
PatternRewriter &rewriter) {
|
|
auto inputTy = dyn_cast<RankedTensorType>(input.getType());
|
|
if (!inputTy)
|
|
return nullptr;
|
|
Value initValue =
|
|
createInitialValueForReduceOp(op, inputTy.getElementType(), rewriter);
|
|
if (!initValue)
|
|
return nullptr;
|
|
|
|
stablehlo::ReduceOp reduce = rewriter.create<stablehlo::ReduceOp>(
|
|
op->getLoc(), outTy, input, initValue,
|
|
rewriter.getDenseI64ArrayAttr(dims));
|
|
|
|
Block &block = reduce.getBody().emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
auto *firstArgument = block.args_begin();
|
|
auto secondArgument = block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
Value result;
|
|
if (isa<AtenAmaxOp, AtenMaxOp, AtenMaxDimOp>(op)) {
|
|
result = rewriter.create<stablehlo::MaxOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
} else if (isa<AtenAminOp, AtenMinOp>(op)) {
|
|
result = rewriter.create<stablehlo::MinOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
} else if (isa<AtenSumOp>(op)) {
|
|
result = rewriter.create<stablehlo::AddOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
} else if (isa<AtenAllOp>(op)) {
|
|
result = rewriter.create<stablehlo::AndOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
} else if (isa<AtenAnyOp>(op)) {
|
|
result = rewriter.create<stablehlo::OrOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
} else if (isa<AtenProdOp>(op)) {
|
|
result = rewriter.create<stablehlo::MulOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
} else {
|
|
op->emitError("unimplemented lowering in "
|
|
"createReduceOpWithSingleRegionOp");
|
|
return nullptr;
|
|
}
|
|
rewriter.create<stablehlo::ReturnOp>(op->getLoc(), result);
|
|
}
|
|
return reduce.getResults()[0];
|
|
}
|
|
|
|
// Util for converting AtenArgmaxOp and AtenMaxDimOp
|
|
static std::optional<ValueRange>
|
|
getMaxInDim(ConversionPatternRewriter &rewriter, Operation *op, Value &input,
|
|
ArrayRef<Value> inputShapeVec, int64_t dim,
|
|
size_t dimSizeIndexBits) {
|
|
auto inputTy = cast<RankedTensorType>(input.getType());
|
|
if (!inputTy) {
|
|
return std::nullopt;
|
|
}
|
|
if (!inputTy.getElementType().isIntOrFloat()) {
|
|
return std::nullopt;
|
|
}
|
|
auto inputShape = inputTy.getShape();
|
|
auto inputElemTy = inputTy.getElementType();
|
|
|
|
Value initValue = createInitialValueForReduceOp(op, inputElemTy, rewriter);
|
|
if (!initValue)
|
|
return std::nullopt;
|
|
Value initIndex;
|
|
if (dimSizeIndexBits == 32) {
|
|
initIndex = hlo::getConstTensor<int32_t>(rewriter, op, {0}, {}).value();
|
|
} else {
|
|
initIndex = hlo::getConstTensor<int64_t>(rewriter, op, {0}, {}).value();
|
|
}
|
|
|
|
std::vector<int64_t> outputShape(inputShape.begin(), inputShape.end());
|
|
outputShape.erase(outputShape.begin() + dim);
|
|
auto outputTy = RankedTensorType::get(outputShape, inputElemTy);
|
|
auto outputIndexTy =
|
|
RankedTensorType::get(outputShape, rewriter.getIntegerType(64));
|
|
|
|
auto inputShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), inputShapeVec);
|
|
auto indexTensor = rewriter.create<stablehlo::DynamicIotaOp>(
|
|
op->getLoc(),
|
|
RankedTensorType::get(inputShape,
|
|
rewriter.getIntegerType(dimSizeIndexBits)),
|
|
inputShapeTensor, static_cast<uint64_t>(dim));
|
|
|
|
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
|
|
op->getLoc(), TypeRange{outputTy, outputIndexTy},
|
|
ValueRange{input, indexTensor},
|
|
ValueRange{
|
|
initValue,
|
|
initIndex,
|
|
},
|
|
rewriter.getDenseI64ArrayAttr(dim));
|
|
|
|
Block &block = stablehloReduceOp.getBody().emplaceBlock();
|
|
|
|
// Add block arguments
|
|
auto blockValArgumentType =
|
|
RankedTensorType::get({}, inputTy.getElementType());
|
|
auto blockIdxArgumentType =
|
|
RankedTensorType::get({}, rewriter.getIntegerType(dimSizeIndexBits));
|
|
auto compareResultType = RankedTensorType::get({}, rewriter.getI1Type());
|
|
block.addArgument(blockValArgumentType, op->getLoc());
|
|
block.addArgument(blockIdxArgumentType, op->getLoc());
|
|
|
|
block.addArgument(blockValArgumentType, op->getLoc());
|
|
block.addArgument(blockIdxArgumentType, op->getLoc());
|
|
|
|
auto *firstValArg = block.args_begin();
|
|
auto *firstIdxArg = std::next(firstValArg);
|
|
auto *secondValArg = std::next(firstIdxArg);
|
|
auto *secondIdxArg = std::next(secondValArg);
|
|
|
|
stablehlo::ComparisonTypeAttr compareTypeAttr;
|
|
if (isa<mlir::FloatType>(inputTy.getElementType())) {
|
|
compareTypeAttr = stablehlo::ComparisonTypeAttr::get(
|
|
rewriter.getContext(), stablehlo::ComparisonType::FLOAT);
|
|
} else if (isa<mlir::IntegerType>(inputTy.getElementType())) {
|
|
compareTypeAttr = stablehlo::ComparisonTypeAttr::get(
|
|
rewriter.getContext(), stablehlo::ComparisonType::SIGNED);
|
|
}
|
|
stablehlo::ComparisonDirectionAttr compareGeDirectionAttr =
|
|
stablehlo::ComparisonDirectionAttr::get(
|
|
rewriter.getContext(), stablehlo::ComparisonDirection::GE);
|
|
stablehlo::ComparisonDirectionAttr compareEqDirectionAttr =
|
|
stablehlo::ComparisonDirectionAttr::get(
|
|
rewriter.getContext(), stablehlo::ComparisonDirection::EQ);
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
|
|
Value compareGeResult = rewriter.create<stablehlo::CompareOp>(
|
|
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
|
|
compareGeDirectionAttr, compareTypeAttr);
|
|
Value retValResult = rewriter.create<stablehlo::SelectOp>(
|
|
op->getLoc(), compareGeResult, *firstValArg, *secondValArg);
|
|
|
|
// get smaller index value if compared nums are equal.
|
|
Value compareEqResult = rewriter.create<stablehlo::CompareOp>(
|
|
op->getLoc(), compareResultType, *firstValArg, *secondValArg,
|
|
compareEqDirectionAttr, compareTypeAttr);
|
|
Value minIdx = rewriter.create<stablehlo::MinOp>(op->getLoc(), *firstIdxArg,
|
|
*secondIdxArg);
|
|
Value idxWithGeVal = rewriter.create<stablehlo::SelectOp>(
|
|
op->getLoc(), compareGeResult, *firstIdxArg, *secondIdxArg);
|
|
Value retIdxResult = rewriter.create<stablehlo::SelectOp>(
|
|
op->getLoc(), compareEqResult, minIdx, idxWithGeVal);
|
|
|
|
rewriter.create<stablehlo::ReturnOp>(
|
|
op->getLoc(), mlir::ValueRange{retValResult, retIdxResult});
|
|
}
|
|
return stablehloReduceOp.getResults();
|
|
}
|
|
|
|
namespace {
|
|
template <typename AtenOpT>
|
|
class ConvertAtenReductionOp : public ConvertAtenOp<AtenOpT> {
|
|
public:
|
|
using ConvertAtenOp<AtenOpT>::ConvertAtenOp;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
assert(false && "Unimplemented");
|
|
return failure();
|
|
};
|
|
};
|
|
|
|
template <typename AtenOpT>
|
|
class ConvertAtenReduceAllDimsOp : public ConvertAtenReductionOp<AtenOpT> {
|
|
public:
|
|
using ConvertAtenReductionOp<AtenOpT>::ConvertAtenReductionOp;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = dyn_cast<RankedTensorType>(input.getType());
|
|
auto outTy = dyn_cast<RankedTensorType>(
|
|
ConvertAtenReductionOp<AtenOpT>::getTypeConverter()->convertType(
|
|
op.getType()));
|
|
if (!inputTy || !outTy) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only Tensor types supported in StableHLO");
|
|
}
|
|
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (isa<mlir::IntegerType>(inputElemTy) &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"IntegerType with bitwidth 8 unsupported in convertion to StableHLO");
|
|
}
|
|
|
|
if (inputElemTy != outTy.getElementType()) {
|
|
// use output type as computation type
|
|
input = rewriter.create<stablehlo::ConvertOp>(op->getLoc(), input,
|
|
outTy.getElementType());
|
|
}
|
|
|
|
SmallVector<int64_t> dims =
|
|
llvm::to_vector(llvm::seq<int64_t>(0, inputTy.getRank()));
|
|
Value result =
|
|
createReduceOpWithSingleRegionOp(op, input, outTy, dims, rewriter);
|
|
if (!result) {
|
|
return op->emitError("createReduceOpWithSingleRegionOp return nullptr");
|
|
}
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <typename AtenOpT>
|
|
class ConvertAtenReduceKeepDimOp : public ConvertAtenReductionOp<AtenOpT> {
|
|
public:
|
|
using ConvertAtenReductionOp<AtenOpT>::ConvertAtenReductionOp;
|
|
using OpAdaptor = typename AtenOpT::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = dyn_cast<RankedTensorType>(input.getType());
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only Tensor types supported in StableHLO");
|
|
}
|
|
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (isa<mlir::IntegerType>(inputElemTy) &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"IntegerType with bitwidth 8 unsupported in convertion to StableHLO");
|
|
}
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool keepdim unsupported");
|
|
}
|
|
|
|
SmallVector<int64_t> inputDims;
|
|
SmallVector<int64_t> dims;
|
|
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(inputDims))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const integer `dim` is not supported");
|
|
}
|
|
for (auto d : inputDims) {
|
|
d = toPositiveDim(d, inputTy.getRank());
|
|
// Drop invalid dims
|
|
if (isValidDim(d, inputTy.getRank())) {
|
|
dims.push_back(d);
|
|
}
|
|
}
|
|
llvm::sort(dims.begin(), dims.end());
|
|
std::unordered_set<int64_t> dimsSet(dims.begin(), dims.end());
|
|
SmallVector<int64_t> reduceResultShape;
|
|
for (int64_t i = 0; i < inputTy.getRank(); i++) {
|
|
if (dimsSet.find(i) == dimsSet.end()) {
|
|
reduceResultShape.push_back(inputTy.getDimSize(i));
|
|
}
|
|
}
|
|
|
|
Value reduceResult = createReduceOpWithSingleRegionOp(
|
|
op, input, RankedTensorType::get(reduceResultShape, inputElemTy), dims,
|
|
rewriter);
|
|
if (!reduceResult)
|
|
return op->emitError("createReduceOpWithSingleRegionOp return nullptr");
|
|
|
|
if (keepDim) {
|
|
const auto &options = ConvertAtenReductionOp<AtenOpT>::getOptions();
|
|
auto outShapeInfo = hlo::getDimSizesOfTensor(rewriter, op, input,
|
|
options.dimSizeIndexBits);
|
|
if (failed(outShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto outShapeVec = *outShapeInfo;
|
|
auto one = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
for (int64_t i : dims) {
|
|
outShapeVec[i] = one;
|
|
}
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<stablehlo::DynamicReshapeOp>(
|
|
op,
|
|
ConvertAtenReductionOp<AtenOpT>::getTypeConverter()->convertType(
|
|
op.getType()),
|
|
reduceResult, outShapeTensor);
|
|
return success();
|
|
}
|
|
rewriter.replaceOp(op, reduceResult);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// AtenArgmaxOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenArgmaxOp>::matchAndRewrite(
|
|
AtenArgmaxOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = cast<RankedTensorType>(input.getType());
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only Tensor types supported in StableHLO");
|
|
}
|
|
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported!
|
|
if (isa<mlir::IntegerType>(inputElemTy) &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenArgmaxOp to StableHLO");
|
|
}
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-int dim unsupported");
|
|
}
|
|
dim = toPositiveDim(dim, inputTy.getRank());
|
|
if (!isValidDim(dim, inputTy.getRank())) {
|
|
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
}
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool keepdim unsupported");
|
|
}
|
|
|
|
const auto &options = getOptions();
|
|
auto inputShapeInfo =
|
|
hlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(inputShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto inputShapeVec = *inputShapeInfo;
|
|
auto stablehloReduceResults = getMaxInDim(rewriter, op, input, inputShapeVec,
|
|
dim, options.dimSizeIndexBits)
|
|
.value();
|
|
|
|
if (keepDim) {
|
|
auto outShapeVec = inputShapeVec;
|
|
outShapeVec[dim] = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<stablehlo::DynamicReshapeOp>(
|
|
op, typeConverter->convertType(op.getType()), stablehloReduceResults[1],
|
|
outShapeTensor);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOp(op, stablehloReduceResults[1]);
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenMaxDimOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenMaxDimOp>::matchAndRewrite(
|
|
AtenMaxDimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = dyn_cast<RankedTensorType>(input.getType());
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only Tensor types supported in StableHLO");
|
|
}
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"Only floating-point or integer datatype legalization supported");
|
|
}
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (isa<mlir::IntegerType>(inputElemTy) &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenMaxDimOp to StableHLO");
|
|
}
|
|
|
|
RankedTensorType valResultType = cast<RankedTensorType>(
|
|
getTypeConverter()->convertType(op.getResult(0).getType()));
|
|
RankedTensorType idxResultType = cast<RankedTensorType>(
|
|
getTypeConverter()->convertType(op.getResult(1).getType()));
|
|
Type idxElementType = idxResultType.getElementType();
|
|
if (!isa<mlir::IntegerType>(idxElementType)) {
|
|
return op.emitError("Aten.max.dim needs integer-like result");
|
|
}
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-int dim unsupported");
|
|
}
|
|
dim = toPositiveDim(dim, inputTy.getRank());
|
|
if (!isValidDim(dim, inputTy.getRank())) {
|
|
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
}
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool keepdim unsupported");
|
|
}
|
|
|
|
const auto &options = getOptions();
|
|
auto inputShapeInfo =
|
|
hlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(inputShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto inputShapeVec = *inputShapeInfo;
|
|
|
|
if (op.getResult(1).use_empty()) {
|
|
llvm::SmallVector<int64_t> outputShape(inputTy.getShape());
|
|
outputShape.erase(outputShape.begin() + dim);
|
|
Value reduceResult = createReduceOpWithSingleRegionOp(
|
|
op, input, RankedTensorType::get(outputShape, inputElemTy),
|
|
ArrayRef<int64_t>{dim}, rewriter);
|
|
if (!reduceResult)
|
|
return op->emitError("createReduceOpWithSingleRegionOp return nullptr");
|
|
|
|
if (keepDim) {
|
|
auto outShapeVec = inputShapeVec;
|
|
outShapeVec[dim] = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
|
|
auto stablehloReduceValueResult =
|
|
rewriter.create<stablehlo::DynamicReshapeOp>(
|
|
op->getLoc(), valResultType, reduceResult, outShapeTensor);
|
|
rewriter.replaceOp(op, {stablehloReduceValueResult, Value()});
|
|
return success();
|
|
}
|
|
rewriter.replaceOp(op, {reduceResult, Value()});
|
|
return success();
|
|
} else {
|
|
auto stablehloReduceResults =
|
|
getMaxInDim(rewriter, op, input, inputShapeVec, dim,
|
|
options.dimSizeIndexBits)
|
|
.value();
|
|
|
|
if (keepDim) {
|
|
auto outShapeVec = inputShapeVec;
|
|
outShapeVec[dim] = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
|
|
auto stablehloReduceValueResult =
|
|
rewriter.create<stablehlo::DynamicReshapeOp>(
|
|
op->getLoc(), valResultType, stablehloReduceResults[0],
|
|
outShapeTensor);
|
|
auto stablehloReduceIndexResult =
|
|
rewriter.create<stablehlo::DynamicReshapeOp>(
|
|
op->getLoc(), idxResultType, stablehloReduceResults[1],
|
|
outShapeTensor);
|
|
rewriter.replaceOp(
|
|
op, {stablehloReduceValueResult, stablehloReduceIndexResult});
|
|
return success();
|
|
}
|
|
rewriter.replaceOp(op,
|
|
{stablehloReduceResults[0], stablehloReduceResults[1]});
|
|
return success();
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
// AtenSumDimIntListOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenSumDimIntListOp>::matchAndRewrite(
|
|
AtenSumDimIntListOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
Value input = adaptor.getSelf();
|
|
auto inputTy = dyn_cast<RankedTensorType>(input.getType());
|
|
auto outTy =
|
|
dyn_cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
|
|
if (!inputTy) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only Tensor types supported in StableHLO");
|
|
}
|
|
if (inputTy.getElementType() != outTy.getElementType()) {
|
|
// Use output element type as computation type.
|
|
auto dstElemTy = outTy.getElementType();
|
|
input =
|
|
rewriter.create<stablehlo::ConvertOp>(op->getLoc(), input, dstElemTy);
|
|
inputTy = dyn_cast<RankedTensorType>(input.getType());
|
|
}
|
|
auto inputElemTy = inputTy.getElementType();
|
|
if (!inputElemTy.isIntOrFloat()) {
|
|
return op.emitError(
|
|
"Only floating-point or integer datatype legalization supported");
|
|
}
|
|
|
|
// Currently, (u)int8 dtype is not supported
|
|
if (isa<mlir::IntegerType>(inputElemTy) &&
|
|
inputElemTy.getIntOrFloatBitWidth() == 8) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "IntegerType with bitwidth 8 unsupported in convertion from "
|
|
"AtenSumDimIntListOp to StableHLO");
|
|
}
|
|
|
|
SmallVector<int64_t> inputDims;
|
|
SmallVector<int64_t> dims;
|
|
|
|
if (failed(checkNotNone(rewriter, op, op.getDim()))) {
|
|
inputDims = llvm::to_vector<4>(llvm::seq<int64_t>(0, inputTy.getRank()));
|
|
} else {
|
|
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(inputDims))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const integer `dim` is not supported");
|
|
}
|
|
if (inputDims.size() == 0) {
|
|
inputDims = llvm::to_vector<4>(llvm::seq<int64_t>(0, inputTy.getRank()));
|
|
}
|
|
}
|
|
|
|
for (auto d : inputDims) {
|
|
d = toPositiveDim(d, inputTy.getRank());
|
|
// Drop invalid dims
|
|
if (isValidDim(d, inputTy.getRank())) {
|
|
dims.push_back(d);
|
|
}
|
|
}
|
|
|
|
std::unordered_set<int64_t> dimsSet(dims.begin(), dims.end());
|
|
SmallVector<int64_t> reduceResultShape;
|
|
for (int64_t i = 0; i < inputTy.getRank(); i++) {
|
|
if (dimsSet.find(i) == dimsSet.end()) {
|
|
reduceResultShape.push_back(inputTy.getDimSize(i));
|
|
}
|
|
}
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(op, "non-bool keepdim unsupported");
|
|
}
|
|
Value initValue =
|
|
createInitialValueForReduceOp(op, inputTy.getElementType(), rewriter);
|
|
if (!initValue)
|
|
return failure();
|
|
|
|
llvm::sort(dims.begin(), dims.end());
|
|
auto stablehloReduceOp = rewriter.create<stablehlo::ReduceOp>(
|
|
op.getLoc(),
|
|
RankedTensorType::get(reduceResultShape, outTy.getElementType()), input,
|
|
initValue, rewriter.getDenseI64ArrayAttr(dims));
|
|
|
|
Region ®ion = stablehloReduceOp.getBody();
|
|
Block &block = region.emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputTy.getElementType());
|
|
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto *firstArgument = block.args_begin();
|
|
auto secondArgument = block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
Value addResult = rewriter.create<stablehlo::AddOp>(
|
|
op->getLoc(), blockArgumentTy, *firstArgument, *secondArgument);
|
|
rewriter.create<stablehlo::ReturnOp>(op->getLoc(), addResult);
|
|
}
|
|
|
|
if (keepDim) {
|
|
const auto &options = getOptions();
|
|
auto outShapeInfo =
|
|
hlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(outShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto outShapeVec = *outShapeInfo;
|
|
auto one = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
for (int64_t i : dims) {
|
|
outShapeVec[i] = one;
|
|
}
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<stablehlo::DynamicReshapeOp>(
|
|
op, getTypeConverter()->convertType(op.getType()),
|
|
stablehloReduceOp.getResult(0), outShapeTensor);
|
|
return success();
|
|
}
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outTy,
|
|
stablehloReduceOp.getResults());
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenFrobeniusNormDimOp
|
|
// aten.frobenius_norm.dim => stablehlo.reduce(calculate square sum along given
|
|
// dims) + stablehlo.sqrt
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenFrobeniusNormDimOp>::matchAndRewrite(
|
|
AtenFrobeniusNormDimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
const TorchToStablehloOptions &options = getOptions();
|
|
|
|
Value input = adaptor.getSelf();
|
|
auto inputType = dyn_cast<RankedTensorType>(input.getType());
|
|
if (!inputType) {
|
|
return op.emitError(
|
|
"only ranked tensor input supported in AtenFrobeniusNormDimOp");
|
|
}
|
|
auto inputRank = inputType.getRank();
|
|
auto inputElemType = inputType.getElementType();
|
|
if (!isa<mlir::FloatType>(inputElemType)) {
|
|
return op.emitError(
|
|
"only float dtype allowed in input tensor of AtenFrobeniusNormDimOp");
|
|
}
|
|
|
|
SmallVector<int64_t> dims;
|
|
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(dims))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const integer `dim` is not supported");
|
|
}
|
|
for (auto &dim : dims) {
|
|
dim = toPositiveDim(dim, inputRank);
|
|
if (!isValidDim(dim, inputRank)) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"invalid dimension detected in `dim`");
|
|
}
|
|
}
|
|
|
|
// Sort the dims in ascending order, making the conversion
|
|
// stable with unordered dims.
|
|
std::sort(dims.begin(), dims.end());
|
|
|
|
std::unordered_set<int64_t> dimsSet(dims.begin(), dims.end());
|
|
SmallVector<int64_t> reduceResultShape;
|
|
for (int64_t i = 0; i < inputRank; i++) {
|
|
if (dimsSet.find(i) == dimsSet.end()) {
|
|
reduceResultShape.push_back(inputType.getDimSize(i));
|
|
}
|
|
}
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const bool `keepdim` is not supported");
|
|
}
|
|
|
|
auto squareOp = rewriter.create<stablehlo::MulOp>(op->getLoc(), input, input);
|
|
|
|
auto initValue = createInitialValueForReduceOp(op, inputElemType, rewriter);
|
|
if (!initValue) {
|
|
return failure();
|
|
}
|
|
|
|
auto reduceOp = rewriter.create<stablehlo::ReduceOp>(
|
|
op->getLoc(), RankedTensorType::get(reduceResultShape, inputElemType),
|
|
squareOp.getResult(), initValue, rewriter.getDenseI64ArrayAttr(dims));
|
|
|
|
Region ®ion = reduceOp.getBody();
|
|
Block &block = region.emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, inputElemType);
|
|
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto firstArgument = *block.args_begin();
|
|
auto secondArgument = *block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
|
|
auto addResult = rewriter.create<stablehlo::AddOp>(
|
|
op->getLoc(), firstArgument, secondArgument);
|
|
rewriter.create<stablehlo::ReturnOp>(op->getLoc(), addResult.getResult());
|
|
}
|
|
|
|
auto output =
|
|
rewriter.create<stablehlo::SqrtOp>(op->getLoc(), reduceOp.getResult(0));
|
|
|
|
if (keepDim) {
|
|
auto outShapeInfo =
|
|
hlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(outShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto outShapeVec = *outShapeInfo;
|
|
auto one = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
for (int64_t i : dims) {
|
|
outShapeVec[i] = one;
|
|
}
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<stablehlo::DynamicReshapeOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), output,
|
|
outShapeTensor);
|
|
return success();
|
|
}
|
|
rewriter.replaceOp(op, output.getResult());
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
// AtenLinalgVectorNormOp
|
|
namespace {
|
|
template <>
|
|
LogicalResult ConvertAtenReductionOp<AtenLinalgVectorNormOp>::matchAndRewrite(
|
|
AtenLinalgVectorNormOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
const TorchToStablehloOptions &options = getOptions();
|
|
|
|
Value input = adaptor.getSelf();
|
|
auto inputType = dyn_cast<RankedTensorType>(input.getType());
|
|
if (!inputType) {
|
|
return op.emitError(
|
|
"only ranked tensor input supported in AtenLinalgVectorNormOp");
|
|
}
|
|
int64_t inputRank = inputType.getRank();
|
|
|
|
auto outType =
|
|
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));
|
|
auto outElemType = outType.getElementType();
|
|
if (!isa<mlir::FloatType>(outElemType)) {
|
|
return op.emitError("only float dtype allowed in AtenLinalgVectorNormOp");
|
|
}
|
|
|
|
if (inputType.getElementType() != outType.getElementType()) {
|
|
input =
|
|
rewriter.create<stablehlo::ConvertOp>(op->getLoc(), input, outElemType);
|
|
}
|
|
|
|
Value ord =
|
|
hlo::scalarToStablehloTensor(rewriter, op, adaptor.getOrd(), outElemType);
|
|
|
|
SmallVector<int64_t> dims;
|
|
if (failed(checkNotNone(rewriter, op, op.getDim()))) {
|
|
dims = llvm::to_vector<4>(llvm::seq<int64_t>(0, inputRank));
|
|
} else {
|
|
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(dims))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const integer `dim` is not supported");
|
|
}
|
|
|
|
for (auto &dim : dims) {
|
|
dim = toPositiveDim(dim, inputRank);
|
|
if (!isValidDim(dim, inputRank)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "invalid dimension detected in `dim`");
|
|
}
|
|
}
|
|
// Sort the dims in ascending order, making the conversion
|
|
// stable with unordered dims.
|
|
std::sort(dims.begin(), dims.end());
|
|
}
|
|
|
|
std::unordered_set<int64_t> dimsSet(dims.begin(), dims.end());
|
|
SmallVector<int64_t> reduceResultShape;
|
|
for (int64_t i = 0; i < inputType.getRank(); i++) {
|
|
if (dimsSet.find(i) == dimsSet.end()) {
|
|
reduceResultShape.push_back(inputType.getDimSize(i));
|
|
}
|
|
}
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(op.getKeepdim(), m_TorchConstantBool(&keepDim))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "non-const bool `keepdim` is not supported");
|
|
}
|
|
|
|
auto initValue = createInitialValueForReduceOp(op, outElemType, rewriter);
|
|
if (!initValue) {
|
|
return failure();
|
|
}
|
|
|
|
Value absValue = rewriter.create<stablehlo::AbsOp>(op->getLoc(), input);
|
|
Value powValue = rewriter.create<chlo::BroadcastPowOp>(op->getLoc(), absValue,
|
|
ord, nullptr);
|
|
|
|
auto reduceOp = rewriter.create<stablehlo::ReduceOp>(
|
|
op->getLoc(), RankedTensorType::get(reduceResultShape, outElemType),
|
|
powValue, initValue, rewriter.getDenseI64ArrayAttr(dims));
|
|
|
|
Region ®ion = reduceOp.getBody();
|
|
Block &block = region.emplaceBlock();
|
|
auto blockArgumentTy = RankedTensorType::get({}, outElemType);
|
|
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
block.addArgument(blockArgumentTy, op->getLoc());
|
|
|
|
auto firstArgument = *block.args_begin();
|
|
auto secondArgument = *block.args_rbegin();
|
|
|
|
{
|
|
OpBuilder::InsertionGuard guard(rewriter);
|
|
rewriter.setInsertionPointToStart(&block);
|
|
|
|
auto addResult = rewriter.create<stablehlo::AddOp>(
|
|
op->getLoc(), firstArgument, secondArgument);
|
|
rewriter.create<stablehlo::ReturnOp>(op->getLoc(), addResult.getResult());
|
|
}
|
|
auto constantOne = rewriter.create<stablehlo::ConstantOp>(
|
|
op->getLoc(), blockArgumentTy,
|
|
DenseElementsAttr::get(
|
|
blockArgumentTy,
|
|
APFloat(cast<mlir::FloatType>(outElemType).getFloatSemantics(), 1)));
|
|
auto reciprocalOrd = rewriter.create<stablehlo::DivOp>(
|
|
op->getLoc(), blockArgumentTy, constantOne, ord);
|
|
auto output = rewriter.create<chlo::BroadcastPowOp>(
|
|
op->getLoc(), reduceOp.getResult(0), reciprocalOrd, nullptr);
|
|
|
|
if (keepDim) {
|
|
auto outShapeInfo =
|
|
hlo::getDimSizesOfTensor(rewriter, op, input, options.dimSizeIndexBits);
|
|
if (failed(outShapeInfo)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to get dimension sizes of the input");
|
|
}
|
|
auto outShapeVec = *outShapeInfo;
|
|
auto one = rewriter.create<mlir::arith::ConstantOp>(
|
|
op->getLoc(),
|
|
rewriter.getIntegerAttr(
|
|
rewriter.getIntegerType(options.dimSizeIndexBits), 1));
|
|
for (int64_t i : dims) {
|
|
outShapeVec[i] = one;
|
|
}
|
|
auto outShapeTensor = rewriter.create<mlir::tensor::FromElementsOp>(
|
|
op->getLoc(), outShapeVec);
|
|
rewriter.replaceOpWithNewOp<stablehlo::DynamicReshapeOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), output,
|
|
outShapeTensor);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOp(op, output.getResult());
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_stablehlo::populateReductionOpPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target, const TorchToStablehloOptions &options) {
|
|
MLIRContext *context = patterns.getContext();
|
|
#define INSERT_ATEN_REDUCTION_OP_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenReductionOp<AtenOp>>(typeConverter, context, options)
|
|
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenArgmaxOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenMaxDimOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenSumDimIntListOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenFrobeniusNormDimOp);
|
|
INSERT_ATEN_REDUCTION_OP_PATTERN(AtenLinalgVectorNormOp);
|
|
#undef INSERT_ATEN_REDUCTION_OP_PATTERN
|
|
|
|
#define INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenReduceAllDimsOp<AtenOp>>(typeConverter, context, \
|
|
options)
|
|
|
|
INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN(AtenMaxOp);
|
|
INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN(AtenMinOp);
|
|
INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN(AtenSumOp);
|
|
INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN(AtenProdOp);
|
|
INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN(AtenAllOp);
|
|
INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN(AtenAnyOp);
|
|
#undef INSERT_ATEN_REDUCTION_ALL_DIMS_OP_PATTERN
|
|
|
|
#define INSERT_ATEN_REDUCTION_KEEP_DIM_OP_PATTERN(AtenOp) \
|
|
target.addIllegalOp<AtenOp>(); \
|
|
patterns.add<ConvertAtenReduceKeepDimOp<AtenOp>>(typeConverter, context, \
|
|
options)
|
|
|
|
INSERT_ATEN_REDUCTION_KEEP_DIM_OP_PATTERN(AtenAmaxOp);
|
|
INSERT_ATEN_REDUCTION_KEEP_DIM_OP_PATTERN(AtenAminOp);
|
|
#undef INSERT_ATEN_REDUCTION_KEEP_DIM_OP_PATTERN
|
|
}
|