mirror of https://github.com/llvm/torch-mlir
1259e8a00a
### Changes 1. Folders for view-like ops: `aten.view`, `aten.flatten.using_ints`, and `aten.unflatten.int` 2. Folder for transpose 3. Extended support for the `aten.slice.Tensor` op folder to include negative strides. ### Motivation The biggest motivation for this patch is to fold the extremely convoluted ir that gets generated when exporting a pytorch model with an `aten.pad` op to ONNX, then re-importing and lowering back to torch. For example, the verbose output of the e2e test `PadModule_basic` with `-c onnx`: ```mlir module { func.func @main_graph(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> attributes {torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 20 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.5.0"} { %none = torch.constant.none %0 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<_> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %1 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__1> : tensor<4xsi64>} : () -> !torch.vtensor<[4],si64> %2 = torch.operator "onnx.ConstantOfShape"(%0) {torch.onnx.value = dense_resource<__2> : tensor<1xsi64>} : (!torch.vtensor<[1],si64>) -> !torch.vtensor<[4],si64> %3 = torch.operator "onnx.Concat"(%1, %2) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[4],si64>, !torch.vtensor<[4],si64>) -> !torch.vtensor<[8],si64> %4 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__3> : tensor<2xsi64>} : () -> !torch.vtensor<[2],si64> %5 = torch.operator "onnx.Reshape"(%3, %4) {torch.onnx.allowzero = 0 : si64} : (!torch.vtensor<[8],si64>, !torch.vtensor<[2],si64>) -> !torch.vtensor<[4,2],si64> %6 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__4> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %7 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__5> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %8 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__6> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %9 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__7> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %10 = torch.operator "onnx.Slice"(%5, %7, %8, %6, %9) : (!torch.vtensor<[4,2],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[4,2],si64> %11 = torch.operator "onnx.Transpose"(%10) {torch.onnx.perm = [1 : si64, 0 : si64]} : (!torch.vtensor<[4,2],si64>) -> !torch.vtensor<[2,4],si64> %12 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__8> : tensor<1xsi64>} : () -> !torch.vtensor<[1],si64> %13 = torch.operator "onnx.Reshape"(%11, %12) {torch.onnx.allowzero = 0 : si64} : (!torch.vtensor<[2,4],si64>, !torch.vtensor<[1],si64>) -> !torch.vtensor<[8],si64> %14 = torch.operator "onnx.Cast"(%13) {torch.onnx.to = 7 : si64} : (!torch.vtensor<[8],si64>) -> !torch.vtensor<[8],si64> %15 = torch.operator "onnx.Constant"() {torch.onnx.value = dense_resource<__9> : tensor<f32>} : () -> !torch.vtensor<[],f32> %16 = torch.operator "onnx.Pad"(%arg0, %14, %15) {torch.onnx.mode = "constant"} : (!torch.vtensor<[?,?,?,?],f32>, !torch.vtensor<[8],si64>, !torch.vtensor<[],f32>) -> !torch.vtensor<[?,?,?,?],f32> return %16 : !torch.vtensor<[?,?,?,?],f32> } } {-# dialect_resources: { builtin: { _: "0x080000000400000000000000", __1: "0x080000000000000000000000010000000000000002000000000000000300000000000000", __2: "0x080000000000000000000000", __3: "0x08000000FFFFFFFFFFFFFFFF0200000000000000", __4: "0x080000000000000000000000", __5: "0x08000000FFFFFFFFFFFFFFFF", __6: "0x080000000100000000000080", __7: "0x08000000FFFFFFFFFFFFFFFF", __8: "0x08000000FFFFFFFFFFFFFFFF", __9: "0x080000000000C03F" } } #-} ``` Get's converted to the torch IR: ```mlir module { func.func @main_graph(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> attributes {torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 20 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.5.0"} { %float1.500000e00 = torch.constant.float 1.500000e+00 %int-9223372036854775807 = torch.constant.int -9223372036854775807 %int-1 = torch.constant.int -1 %int7 = torch.constant.int 7 %int6 = torch.constant.int 6 %int5 = torch.constant.int 5 %int3 = torch.constant.int 3 %int8 = torch.constant.int 8 %int1 = torch.constant.int 1 %int2 = torch.constant.int 2 %int4 = torch.constant.int 4 %int0 = torch.constant.int 0 %0 = torch.vtensor.literal(dense<[0, 1, 2, 3, 0, 0, 0, 0]> : tensor<8xsi64>) : !torch.vtensor<[8],si64> %1 = torch.prim.ListConstruct %int4, %int2 : (!torch.int, !torch.int) -> !torch.list<int> %2 = torch.aten.view %0, %1 : !torch.vtensor<[8],si64>, !torch.list<int> -> !torch.vtensor<[4,2],si64> %3 = torch.aten.slice.Tensor %2, %int0, %int-1, %int-9223372036854775807, %int-1 : !torch.vtensor<[4,2],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[4,2],si64> %4 = torch.aten.transpose.int %3, %int0, %int1 : !torch.vtensor<[4,2],si64>, !torch.int, !torch.int -> !torch.vtensor<[2,4],si64> %5 = torch.prim.ListConstruct %int-1 : (!torch.int) -> !torch.list<int> %6 = torch.aten.view %4, %5 : !torch.vtensor<[2,4],si64>, !torch.list<int> -> !torch.vtensor<[8],si64> %7 = torch.aten.slice.Tensor %6, %int0, %int0, %int1, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %8 = torch.aten.item %7 : !torch.vtensor<[1],si64> -> !torch.int %9 = torch.aten.slice.Tensor %6, %int0, %int1, %int2, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %10 = torch.aten.item %9 : !torch.vtensor<[1],si64> -> !torch.int %11 = torch.aten.slice.Tensor %6, %int0, %int2, %int3, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %12 = torch.aten.item %11 : !torch.vtensor<[1],si64> -> !torch.int %13 = torch.aten.slice.Tensor %6, %int0, %int3, %int4, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %14 = torch.aten.item %13 : !torch.vtensor<[1],si64> -> !torch.int %15 = torch.aten.slice.Tensor %6, %int0, %int4, %int5, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %16 = torch.aten.item %15 : !torch.vtensor<[1],si64> -> !torch.int %17 = torch.aten.slice.Tensor %6, %int0, %int5, %int6, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %18 = torch.aten.item %17 : !torch.vtensor<[1],si64> -> !torch.int %19 = torch.aten.slice.Tensor %6, %int0, %int6, %int7, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %20 = torch.aten.item %19 : !torch.vtensor<[1],si64> -> !torch.int %21 = torch.aten.slice.Tensor %6, %int0, %int7, %int8, %int1 : !torch.vtensor<[8],si64>, !torch.int, !torch.int, !torch.int, !torch.int -> !torch.vtensor<[1],si64> %22 = torch.aten.item %21 : !torch.vtensor<[1],si64> -> !torch.int %23 = torch.prim.ListConstruct %14, %22, %12, %20, %10, %18, %8, %16 : (!torch.int, !torch.int, !torch.int, !torch.int, !torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int> %24 = torch.aten.constant_pad_nd %arg0, %23, %float1.500000e00 : !torch.vtensor<[?,?,?,?],f32>, !torch.list<int>, !torch.float -> !torch.vtensor<[?,?,?,?],f32> return %24 : !torch.vtensor<[?,?,?,?],f32> } } ``` ***All of these operations are useless***. It is literally the result of needing to reverse (and change the lexicographic order hierarchy of) padding ints provided via torch vs. ONNX pad ops, which is then subsequently UNDONE by our ONNX->Torch lowering (represented in the ordering of the generated list construct). With the added folders in this patch, the torch IR becomes: ``` module { func.func @main_graph(%arg0: !torch.vtensor<[?,?,?,?],f32>) -> !torch.vtensor<[?,?,?,?],f32> attributes {torch.onnx_meta.ir_version = 9 : si64, torch.onnx_meta.opset_version = 20 : si64, torch.onnx_meta.producer_name = "pytorch", torch.onnx_meta.producer_version = "2.5.0"} { %float1.500000e00 = torch.constant.float 1.500000e+00 %int0 = torch.constant.int 0 %int2 = torch.constant.int 2 %int3 = torch.constant.int 3 %int1 = torch.constant.int 1 %0 = torch.prim.ListConstruct %int0, %int1, %int2, %int3, %int0, %int0, %int0, %int0 : (!torch.int, !torch.int, !torch.int, !torch.int, !torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list<int> %1 = torch.aten.constant_pad_nd %arg0, %0, %float1.500000e00 : !torch.vtensor<[?,?,?,?],f32>, !torch.list<int>, !torch.float -> !torch.vtensor<[?,?,?,?],f32> return %1 : !torch.vtensor<[?,?,?,?],f32> } } ``` |
||
---|---|---|
.. | ||
CAPI | ||
Conversion | ||
Dialect | ||
RefBackend | ||
python | ||
CMakeLists.txt | ||
lit.cfg.py | ||
lit.site.cfg.py.in |