torch-mlir/frontends/pytorch/e2e_testing/torchscript/elementwise.py

150 lines
4.0 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import torch
from torch_mlir.torchscript.e2e_test.framework import TestUtils
from torch_mlir.torchscript.e2e_test.registry import register_test_case
from torch_mlir.torchscript.annotations import annotate_args, export
# TODO: Support scalar !torch.int/!torch.float variants. Add support to
# ReduceOpVariants to implement them in terms of the tensor-only variants +
# torch.prim.NumToTensor.
# TODO: This is pretty verbose. Can we have a helper to reduce
# the boilerplate?
# ==============================================================================
class ElementwiseUnaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, a):
return torch.tanh(a)
@register_test_case(module_factory=lambda: ElementwiseUnaryModule())
def ElementwiseUnaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4))
# ==============================================================================
class ElementwiseBinaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
([-1], torch.float32, True),
])
def forward(self, a, b):
return a * b
@register_test_case(module_factory=lambda: ElementwiseBinaryModule())
def ElementwiseBinaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4), tu.rand(4))
# ==============================================================================
class ElementwiseTernaryModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
([-1, -1], torch.float32, True),
([-1], torch.float32, True),
])
def forward(self, a, b, c):
return torch.lerp(a, b, c)
@register_test_case(module_factory=lambda: ElementwiseTernaryModule())
def ElementwiseTernaryModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5), tu.rand(4, 5), tu.rand(5))
# ==============================================================================
# Addition is an interesting special case of a binary op, because under the hood
# it carries a third scalar "alpha" parameter, which needs special handling.
class ElementwiseAddModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
([], torch.float32, True),
])
def forward(self, a, b):
return a + b
@register_test_case(module_factory=lambda: ElementwiseAddModule())
def ElementwiseAddModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand())
# ==============================================================================
class ElementwiseUnsqueezeBroadcastModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1], torch.float32, True),
([], torch.float32, True),
])
def forward(self, a, b):
return a * b.unsqueeze(0)
@register_test_case(
module_factory=lambda: ElementwiseUnsqueezeBroadcastModule())
def ElementwiseUnsqueezeBroadcastModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4), tu.rand())
# ==============================================================================
class ElementwiseReluModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
])
def forward(self, x):
return torch.relu(x)
@register_test_case(module_factory=lambda: ElementwiseReluModule())
def ElementwiseReluModule_basic(module, tu: TestUtils):
module.forward(tu.rand(4, 2) - 0.5)