torch-mlir/frontends/pytorch/test/node_import/prim.py

116 lines
4.4 KiB
Python

# -*- Python -*-
# This file is licensed under a pytorch-style license
# See frontends/pytorch/LICENSE for license information.
import typing
import torch
import torch_mlir
import typing
# RUN: %PYTHON %s | npcomp-opt | FileCheck %s
mb = torch_mlir.ModuleBuilder()
# CHECK-LABEL: func @__torch__.prim_NumToTensor(
# CHECK-SAME: %[[ARG:.*]]: i64) -> !numpy.ndarray<*:!numpy.any_dtype> {
# CHECK: %[[RET:.*]] = torch.prim.NumToTensor %[[ARG]] : i64 -> !numpy.ndarray<*:!numpy.any_dtype>
# CHECK: return %[[RET]] : !numpy.ndarray<*:!numpy.any_dtype>
# CHECK: }
@mb.import_function
@torch.jit.script
def prim_NumToTensor(i: int):
return _to_tensor(i)
# CHECK-LABEL: func @__torch__.prim_Print(
# CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> !basicpy.NoneType {
# CHECK: %[[STR:.*]] = basicpy.bytes_constant "x"
# CHECK: torch.prim.Print(%[[STR]], %[[ARG]]) : !basicpy.BytesType, !numpy.ndarray<*:!numpy.any_dtype>
@mb.import_function
@torch.jit.script
def prim_Print(x):
print("x", x)
# CHECK-LABEL: func @__torch__.prim_RaiseException() -> !basicpy.NoneType {
# CHECK: %[[ERRORSTR:.*]] = basicpy.bytes_constant "Error"
# CHECK: %[[NONE:.*]] = torch.prim.Uninitialized : !basicpy.NoneType
# CHECK: torch.prim.RaiseException %[[ERRORSTR]]
# CHECK: return %[[NONE]] : !basicpy.NoneType
@mb.import_function
@torch.jit.script
def prim_RaiseException():
raise Exception("Error")
# CHECK-LABEL: func @__torch__.prim_unchecked_cast(
# CHECK-SAME: %[[ARG:.*]]: !torch.optional<i64>) -> i64 {
# CHECK: %[[NONE:.*]] = basicpy.singleton : !basicpy.NoneType
# CHECK: %[[C3:.*]] = constant 3 : i64
# CHECK: %[[IS_NONE:.*]] = torch.kernel_call "aten::__is__" %[[ARG]], %[[NONE]] : (!torch.optional<i64>, !basicpy.NoneType) -> !basicpy.BoolType
# CHECK: %[[COND:.*]] = basicpy.bool_cast %[[IS_NONE]] : !basicpy.BoolType -> i1
# CHECK: %[[RESULT:.*]] = scf.if %[[COND]] -> (i64) {
# CHECK: scf.yield %[[C3]] : i64
# CHECK: } else {
# CHECK: %[[CASTED:.*]] = torch.prim.unchecked_cast %[[ARG]] : !torch.optional<i64> -> i64
# CHECK: scf.yield %[[CASTED]] : i64
# CHECK: }
# CHECK: return %[[RESULT:.*]] : i64
@mb.import_function
@torch.jit.script
def prim_unchecked_cast(i: typing.Optional[int]):
if i is None:
return 3
return i
# CHECK-LABEL: func @__torch__.prim_TupleUnpack(
# CHECK-SAME: %[[ARG:.*]]: !basicpy.TupleType) -> i64 {
# CHECK: %[[RET:.*]]:2 = torch.prim.TupleUnpack %[[ARG]] : !basicpy.TupleType -> i64, i64
# CHECK: return %[[RET]]#0 : i64
@mb.import_function
@torch.jit.script
def prim_TupleUnpack(tup: typing.Tuple[int, int]):
val, _ = tup
return val
# CHECK-LABEL: func @__torch__.prim_TupleIndex(
# CHECK-SAME: %[[ARG:.*]]: !basicpy.TupleType) -> i64 {
# CHECK: %[[RET:.*]] = torch.prim.TupleIndex %[[ARG]], %[[IDX:.*]] : !basicpy.TupleType, i64 -> i64
# CHECK: return %[[RET]] : i64
@mb.import_function
@torch.jit.script
def prim_TupleIndex(tup: typing.Tuple[int, int]):
return tup[0]
# CHECK-LABEL: func @__torch__.prim_ListUnpack(
# CHECK-SAME: %[[ARG:.*]]: !basicpy.ListType) -> i64 {
# CHECK: %[[RET:.*]]:3 = torch.prim.ListUnpack %[[ARG]] : !basicpy.ListType -> i64, i64
# CHECK: return %[[RET]]#1 : i64
@mb.import_function
@torch.jit.script
def prim_ListUnpack(l: typing.List[int]):
_, val, _ = l
return val
# CHECK-LABEL: func @__torch__.prim_dtype(
# CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> i64 {
# CHECK: %[[RET:.*]] = torch.prim.dtype %[[ARG]] : !numpy.ndarray<*:!numpy.any_dtype> -> i64
# CHECK: return %[[RET]] : i64
@mb.import_function
@torch.jit.script
def prim_dtype(x):
return x.dtype
# CHECK-LABEL: func @__torch__.prim_device(
# CHECK-SAME: %[[ARG:.*]]: !numpy.ndarray<*:!numpy.any_dtype>) -> !torch.Device {
# CHECK: %[[RET:.*]] = torch.prim.device %[[ARG]] : !numpy.ndarray<*:!numpy.any_dtype> -> !torch.Device
# CHECK: return %[[RET]] : !torch.Device
@mb.import_function
@torch.jit.script
def prim_device(x):
return x.device
mb.module.operation.print()
print()