mirror of https://github.com/llvm/torch-mlir
2748 lines
104 KiB
C++
2748 lines
104 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/StringMap.h"
|
|
#include "llvm/Support/Casting.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value mlir::torch::Torch::adjustStaticInformation(OpBuilder &builder,
|
|
Location loc, Value value,
|
|
Type desiredType,
|
|
bool userAllowsRefinement) {
|
|
Type type = value.getType();
|
|
|
|
// If the value is already of the desired type, we're done.
|
|
if (type == desiredType)
|
|
return value;
|
|
|
|
// If the type is a tensor, then adjust the static information.
|
|
if ((type.isa<ValueTensorType>() && desiredType.isa<ValueTensorType>()) ||
|
|
(type.isa<NonValueTensorType>() &&
|
|
desiredType.isa<NonValueTensorType>())) {
|
|
Value adjusted = builder.create<TensorStaticInfoCastOp>(value.getLoc(),
|
|
desiredType, value);
|
|
return adjusted;
|
|
}
|
|
|
|
// If the type is a subtype of desiredType, then we need to derefine it to
|
|
// desiredType, unless the user allows refinement.
|
|
if (isValidSubtype(type, desiredType)) {
|
|
if (!userAllowsRefinement) {
|
|
Value adjusted =
|
|
builder.create<DerefineOp>(value.getLoc(), desiredType, value);
|
|
return adjusted;
|
|
} else {
|
|
return value;
|
|
}
|
|
}
|
|
|
|
// If the desiredType is subtype of type, then we assume that the desiredType
|
|
// is dynamically valid, so we do an unchecked cast.
|
|
if (isValidSubtype(desiredType, type)) {
|
|
Value adjusted =
|
|
builder.create<PrimUncheckedCastOp>(value.getLoc(), desiredType, value);
|
|
return adjusted;
|
|
}
|
|
|
|
// No known adjustment.
|
|
return Value();
|
|
}
|
|
|
|
Value mlir::torch::Torch::copyTensorToType(OpBuilder &builder, Location loc,
|
|
BaseTensorType newType,
|
|
Value tensor) {
|
|
auto originalType = tensor.getType().cast<BaseTensorType>();
|
|
// Adjust the static information in the type to match between the original and
|
|
// new types.
|
|
if (!originalType.hasSameSizesAndDtype(newType)) {
|
|
tensor = builder.create<TensorStaticInfoCastOp>(
|
|
loc, originalType.getWithSizesAndDtypeFrom(newType), tensor);
|
|
}
|
|
|
|
// Unless both the original and new types are both value tensors, we end
|
|
// up creating one op that converts between the value and non-value tensor
|
|
// domains. If both the original and new types are both non-value tensors,
|
|
// then we do the copy by going to a value tensor and back.
|
|
if (tensor.getType().isa<NonValueTensorType>())
|
|
tensor = builder.create<CopyToValueTensorOp>(loc, tensor);
|
|
if (newType.isa<NonValueTensorType>())
|
|
tensor = builder.create<CopyToNonValueTensorOp>(loc, tensor);
|
|
|
|
return tensor;
|
|
}
|
|
|
|
bool mlir::torch::Torch::isListPotentiallyMutated(Value list) {
|
|
assert(list.getType().isa<Torch::ListType>());
|
|
return llvm::any_of(list.getUsers(), potentiallyMutatesListOperands);
|
|
}
|
|
|
|
bool mlir::torch::Torch::potentiallyMutatesListOperands(Operation *op) {
|
|
// TODO: Find a better place to put this assertion.
|
|
assert((!op->hasTrait<Torch::OpTrait::HasValueSemantics>() ||
|
|
op->hasTrait<OpTrait::ReadOnly>()) &&
|
|
"HasValueSemantics should imply ReadOnly!");
|
|
// ReadOnly ops trivially do not mutate any list operands.
|
|
if (op->hasTrait<Torch::OpTrait::ReadOnly>())
|
|
return false;
|
|
|
|
// Ops with no MemoryEffectOpInterface effects also do not mutate any list
|
|
// operands.
|
|
if (auto effects = dyn_cast<MemoryEffectOpInterface>(op)) {
|
|
if (effects.hasNoEffect())
|
|
return false;
|
|
}
|
|
|
|
// Conservatively assume that an op might mutate any list operands.
|
|
return true;
|
|
}
|
|
|
|
static IntegerAttr getI64IntegerAttr(MLIRContext *context, int64_t value) {
|
|
return IntegerAttr::get(IntegerType::get(context, 64), value);
|
|
}
|
|
|
|
static FloatAttr getF64FloatAttr(MLIRContext *context, double value) {
|
|
return FloatAttr::get(Float64Type::get(context), value);
|
|
}
|
|
|
|
static Value getScalarIntValue(Value input, Location loc,
|
|
PatternRewriter &rewriter) {
|
|
auto inputType = input.getType();
|
|
if (inputType.isa<Torch::IntType>()) {
|
|
return input;
|
|
}
|
|
|
|
auto inputTensorType = inputType.dyn_cast<BaseTensorType>();
|
|
if (!inputTensorType)
|
|
return nullptr;
|
|
|
|
Type inputDtype = inputTensorType.getOptionalDtype();
|
|
if (!inputDtype || !inputDtype.isInteger(64))
|
|
return nullptr;
|
|
|
|
std::optional<unsigned> inputRank = getTensorRank(input);
|
|
if (!inputRank || *inputRank != 0)
|
|
return nullptr;
|
|
|
|
if (auto valueTensorLiteralOp = input.getDefiningOp<ValueTensorLiteralOp>()) {
|
|
auto val = valueTensorLiteralOp.getValue()
|
|
.cast<DenseElementsAttr>()
|
|
.getSplatValue<int64_t>();
|
|
return rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(val));
|
|
} else if (auto primNumToTensorScalarOp =
|
|
input.getDefiningOp<PrimNumToTensorScalarOp>()) {
|
|
return primNumToTensorScalarOp.getA();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MethodOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult MethodOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
auto func =
|
|
symbolTable.lookupNearestSymbolFrom<func::FuncOp>(*this, getFunctionAttr());
|
|
if (!func)
|
|
return emitError() << "'@" << getFunction()
|
|
<< "' does not reference a valid function";
|
|
if (func.getVisibility() != SymbolTable::Visibility::Private)
|
|
return emitError() << "'@" << getFunction()
|
|
<< "' must reference a private function";
|
|
if (func.isDeclaration())
|
|
return emitError() << "'@" << getFunction()
|
|
<< "' must reference a function that is defined (not "
|
|
"merely declared)";
|
|
auto expectedReceiverArgType = NnModuleType::get(
|
|
getContext(), getOperation()->getParentOfType<ClassTypeOp>().getName());
|
|
if (func.getFunctionType().getNumInputs() == 0 ||
|
|
func.getFunctionType().getInput(0) != expectedReceiverArgType) {
|
|
return emitError() << "the referenced function '" << getFunction()
|
|
<< "' must have a first argument of type "
|
|
<< expectedReceiverArgType;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NnModuleOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult NnModuleOp::verify() {
|
|
for (Operation &child : *getBody())
|
|
if (!isa<SlotOp, NnModuleTerminatorOp>(&child))
|
|
return child.emitOpError() << "is not allowed inside 'torch.nn_module'";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult NnModuleOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
|
auto classType = symbolTable.lookupNearestSymbolFrom<ClassTypeOp>(
|
|
*this, SymbolRefAttr::get(getContext(), getClassName()));
|
|
if (!classType)
|
|
return emitError() << "'" << getClassName()
|
|
<< "' does not reference a valid class type";
|
|
|
|
auto attrs = llvm::to_vector<6>(getBody()->getOps<SlotOp>());
|
|
auto attrDefs = llvm::to_vector<6>(classType.getBody()->getOps<AttrOp>());
|
|
if (attrs.size() != attrDefs.size())
|
|
return emitError() << "number of 'torch.slot's in a 'torch.nn_module' must "
|
|
"match number of 'torch.attr's in "
|
|
"the corresponding 'torch.class_type'";
|
|
for (int i = 0, e = attrs.size(); i != e; i++) {
|
|
SlotOp attr = attrs[i];
|
|
AttrOp attrDef = attrDefs[i];
|
|
if (!isValidSubtype(attr.getValue().getType(), attrDef.getType()) ||
|
|
attr.getName() != attrDef.getName()) {
|
|
return attr.emitOpError()
|
|
.append("is expected to match type and name of '",
|
|
attrDef.getOperation(), "'")
|
|
.attachNote(attrDef.getLoc())
|
|
.append("see torch.attr at corresponding index ", i, " here");
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimListConstructOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult PrimListConstructOp::verify() {
|
|
auto resultType = getResult().getType();
|
|
auto resultElementType = resultType.dyn_cast<ListType>().getContainedType();
|
|
auto matchResultElementType = [&](Type type) {
|
|
return isValidSubtype(type, resultElementType);
|
|
};
|
|
if (!llvm::all_of(getOperandTypes(), matchResultElementType)) {
|
|
return emitError() << "operand types should have the same type as the "
|
|
"list contained type";
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimDictConstructOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult PrimDictConstructOp::verify() {
|
|
auto isValidSubTypeOf = [](Type expectedType) {
|
|
return [=](Type type) { return isValidSubtype(type, expectedType); };
|
|
};
|
|
|
|
if (!llvm::all_of(getKeys().getTypes(), isValidSubTypeOf(getKeyType())))
|
|
return emitError() << "keys should be of Dict key type";
|
|
|
|
if (!llvm::all_of(getValues().getTypes(), isValidSubTypeOf(getValueType())))
|
|
return emitError() << "values should be of Dict value type";
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ClassTypeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ClassTypeOp::verify() {
|
|
llvm::StringMap<Operation *> namesToOps;
|
|
for (Operation &child : getBody()->without_terminator()) {
|
|
if (!isa<AttrOp, MethodOp>(&child))
|
|
return child.emitOpError() << "is not allowed inside `torch.class_type`";
|
|
StringRef name;
|
|
if (auto attr = dyn_cast<AttrOp>(child))
|
|
name = attr.getName();
|
|
else
|
|
name = cast<MethodOp>(child).getName();
|
|
auto itAndWasInserted = namesToOps.insert({name, &child});
|
|
auto it = itAndWasInserted.first;
|
|
bool wasInserted = itAndWasInserted.second;
|
|
if (!wasInserted) {
|
|
auto diag = emitOpError().append("has duplicate attr/method with name '",
|
|
name, "'");
|
|
diag.attachNote(it->second->getLoc())
|
|
.append("see first conflicting attr/method here");
|
|
diag.attachNote(child.getLoc())
|
|
.append("see second conflicting attr/method here");
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimLoopOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OperandRange
|
|
PrimLoopOp::getSuccessorEntryOperands(std::optional<unsigned int> index) {
|
|
assert(index.has_value() && index.value() == 0);
|
|
return getIterArgsInit();
|
|
}
|
|
|
|
void PrimLoopOp::getSuccessorRegions(
|
|
std::optional<unsigned> index, ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<RegionSuccessor> ®ions) {
|
|
(void)operands;
|
|
|
|
if (!index.has_value()) {
|
|
regions.emplace_back(&getRegion(), getRegion().getArguments().slice(1));
|
|
return;
|
|
}
|
|
assert(*index == 0);
|
|
regions.emplace_back(&getRegion(), getRegion().getArguments().slice(1));
|
|
regions.emplace_back(getResults());
|
|
}
|
|
|
|
bool PrimLoopOp::isForLike() {
|
|
bool b;
|
|
return matchPattern(getInitialCondition(), m_TorchConstantBool(&b)) && b;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimLoopConditionOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MutableOperandRange PrimLoopConditionOp::getMutableSuccessorOperands(
|
|
std::optional<unsigned> index) {
|
|
// Pass all operands except the condition to the successor which is the
|
|
// parent loop op.
|
|
return getIterArgsMutable();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimIfOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult PrimIfOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
// Create the regions.
|
|
result.regions.reserve(2);
|
|
Region *thenRegion = result.addRegion();
|
|
Region *elseRegion = result.addRegion();
|
|
|
|
auto &builder = parser.getBuilder();
|
|
OpAsmParser::UnresolvedOperand cond;
|
|
Type boolType = builder.getType<Torch::BoolType>();
|
|
if (parser.parseOperand(cond) ||
|
|
parser.resolveOperand(cond, boolType, result.operands))
|
|
return failure();
|
|
// Parse results type list.
|
|
if (parser.parseArrowTypeList(result.types))
|
|
return failure();
|
|
// Parse the 'then' region.
|
|
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
|
|
return failure();
|
|
// Parse the 'else' region.
|
|
if (parser.parseKeyword("else"))
|
|
return failure();
|
|
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
|
|
return failure();
|
|
// Parse the optional attribute list.
|
|
if (parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
void PrimIfOp::print(OpAsmPrinter &p) {
|
|
p << " " << getCondition();
|
|
p << " -> (" << getResultTypes() << ") ";
|
|
p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false);
|
|
p << " else ";
|
|
p.printRegion(getElseRegion(), /*printEntryBlockArgs=*/false);
|
|
|
|
p.printOptionalAttrDict((*this)->getAttrs());
|
|
}
|
|
|
|
void PrimIfOp::getSuccessorRegions(std::optional<unsigned> index,
|
|
ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<RegionSuccessor> ®ions) {
|
|
// The `then` and the `else` region branch back to the parent operation.
|
|
if (index.has_value()) {
|
|
regions.push_back(RegionSuccessor(getResults()));
|
|
return;
|
|
}
|
|
|
|
// If the condition is constant, we can give a more precise answer.
|
|
if (auto condAttr = operands.front().dyn_cast_or_null<IntegerAttr>()) {
|
|
Region *executedRegion =
|
|
condAttr.getValue().isOne() ? &getThenRegion() : &getElseRegion();
|
|
regions.push_back(RegionSuccessor(executedRegion));
|
|
return;
|
|
}
|
|
|
|
// If the condition isn't constant, both regions may be executed.
|
|
regions.push_back(RegionSuccessor(&getThenRegion()));
|
|
regions.push_back(RegionSuccessor(&getElseRegion()));
|
|
return;
|
|
}
|
|
|
|
/// Replaces the given op with the contents of the given single-block region,
|
|
/// using the operands of the block terminator to replace operation results.
|
|
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
|
|
Region ®ion, ValueRange blockArgs = {}) {
|
|
assert(llvm::hasSingleElement(region) && "expected single-region block");
|
|
Block *block = ®ion.front();
|
|
Operation *terminator = block->getTerminator();
|
|
ValueRange results = terminator->getOperands();
|
|
rewriter.inlineBlockBefore(block, op, blockArgs);
|
|
rewriter.replaceOp(op, results);
|
|
rewriter.eraseOp(terminator);
|
|
}
|
|
|
|
void PrimIfOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
// If the condition is constant, delete the dead branch and inline the live
|
|
// branch.
|
|
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
|
|
auto constantBool = op.getCondition().getDefiningOp<Torch::ConstantBoolOp>();
|
|
if (!constantBool)
|
|
return rewriter.notifyMatchFailure(op, "non-constant condition");
|
|
replaceOpWithRegion(
|
|
rewriter, op, constantBool.getValue() ? op.getThenRegion() : op.getElseRegion());
|
|
return success();
|
|
});
|
|
// If the thenRegion and elseRegion yield the same Value's, then use those
|
|
// directly.
|
|
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
|
|
auto trueTerminator = op.getThenRegion().front().getTerminator();
|
|
auto falseTerminator = op.getElseRegion().front().getTerminator();
|
|
bool madeChange = false;
|
|
SmallVector<int> resultsToErase;
|
|
for (auto t : llvm::zip(trueTerminator->getOperands(),
|
|
falseTerminator->getOperands(), op->getResults())) {
|
|
auto trueVal = std::get<0>(t);
|
|
auto falseVal = std::get<1>(t);
|
|
auto resultToBeReplaced = std::get<2>(t);
|
|
if (trueVal == falseVal) {
|
|
madeChange |= !resultToBeReplaced.use_empty();
|
|
resultToBeReplaced.replaceAllUsesWith(trueVal);
|
|
}
|
|
}
|
|
// We leave it up to a separate pattern (not yet implemented) to erase the
|
|
// results that are now dead. That transformation is independently useful,
|
|
// and also pretty tricky to implement because it changes the number of
|
|
// results.
|
|
return success(madeChange);
|
|
});
|
|
// Erase any dead results.
|
|
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
|
|
llvm::BitVector resultsToErase(op.getNumResults());
|
|
for (auto result : llvm::enumerate(op->getResults())) {
|
|
if (result.value().use_empty())
|
|
resultsToErase.set(result.index());
|
|
}
|
|
|
|
// If no results have uses and there are no side effects, just erase the op.
|
|
// Approximate the body having no side effects by checking if it is just a
|
|
// terminator.
|
|
// Note: We don't want to make this logic too fancy, because in general,
|
|
// checking for recursive side effects can result in a quadratic amount of
|
|
// work (N nested If's each resulting in O(N) work). It should probably be
|
|
// split into its own pattern if we want to make it fancier.
|
|
if (resultsToErase.all() &&
|
|
llvm::hasSingleElement(op.getThenRegion().front()) &&
|
|
llvm::hasSingleElement(op.getElseRegion().front())) {
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
}
|
|
|
|
// If there are no results to erase, we're done.
|
|
if (!resultsToErase.any())
|
|
return failure();
|
|
|
|
SmallVector<Type> newResultTypes;
|
|
for (int i = 0, e = op->getNumResults(); i < e; ++i) {
|
|
if (resultsToErase[i])
|
|
continue;
|
|
newResultTypes.push_back(op->getResult(i).getType());
|
|
}
|
|
auto newIf =
|
|
rewriter.create<PrimIfOp>(op->getLoc(), newResultTypes, op.getCondition());
|
|
rewriter.inlineRegionBefore(op.getThenRegion(), newIf.getThenRegion(),
|
|
newIf.getThenRegion().end());
|
|
rewriter.inlineRegionBefore(op.getElseRegion(), newIf.getElseRegion(),
|
|
newIf.getElseRegion().end());
|
|
newIf.getThenRegion().front().getTerminator()->eraseOperands(resultsToErase);
|
|
newIf.getElseRegion().front().getTerminator()->eraseOperands(resultsToErase);
|
|
SmallVector<Value> replacementValues;
|
|
for (int i = 0, e = op->getNumResults(), nextNewValue = 0; i < e; ++i) {
|
|
if (resultsToErase[i])
|
|
replacementValues.push_back(nullptr);
|
|
else
|
|
replacementValues.push_back(newIf->getResult(nextNewValue++));
|
|
}
|
|
rewriter.replaceOp(op, replacementValues);
|
|
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DerefineOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool DerefineOp::areCastCompatible(mlir::TypeRange inputs,
|
|
mlir::TypeRange outputs) {
|
|
return isValidSubtype(inputs[0], outputs[0]);
|
|
}
|
|
|
|
OpFoldResult DerefineOp::fold(FoldAdaptor adaptor) {
|
|
auto uncheckedCast = getOperand().getDefiningOp<PrimUncheckedCastOp>();
|
|
if (!uncheckedCast)
|
|
return nullptr;
|
|
if (uncheckedCast.getOperand().getType() == getType())
|
|
return uncheckedCast.getOperand();
|
|
return nullptr;
|
|
}
|
|
|
|
void DerefineOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](DerefineOp op, PatternRewriter &rewriter) {
|
|
bool madeChange = false;
|
|
for (OpOperand &use : llvm::make_early_inc_range(op->getUses())) {
|
|
if (use.getOwner()->hasTrait<OpTrait::AllowsTypeRefinement>()) {
|
|
use.set(op.getOperand());
|
|
madeChange = true;
|
|
}
|
|
}
|
|
return success(madeChange);
|
|
});
|
|
}
|
|
|
|
static OpFoldResult atenIsOrIsNotFoldHelper(Operation *op, bool equalIsTrue) {
|
|
Value lhs = op->getOperand(0);
|
|
Value rhs = op->getOperand(1);
|
|
// Look through DerefineOp's to get more refined static information.
|
|
if (auto derefine = lhs.getDefiningOp<DerefineOp>())
|
|
lhs = derefine.getOperand();
|
|
if (auto derefine = rhs.getDefiningOp<DerefineOp>())
|
|
rhs = derefine.getOperand();
|
|
Type lhsType = lhs.getType();
|
|
Type rhsType = rhs.getType();
|
|
|
|
// If either type is a NoneType, make it be the lhsType.
|
|
if (rhsType.isa<Torch::NoneType>()) {
|
|
std::swap(lhsType, rhsType);
|
|
std::swap(lhs, rhs);
|
|
}
|
|
|
|
// For now, check a few specific cases.
|
|
|
|
// If both types are the singleton `!torch.none` type, then we don't even need
|
|
// to look at the values.
|
|
if (lhsType.isa<Torch::NoneType>() && rhsType.isa<Torch::NoneType>())
|
|
return IntegerAttr::get(IntegerType::get(op->getContext(), 1), equalIsTrue);
|
|
|
|
// If neither type is a subtype of the other, then the result is false.
|
|
// TODO: Implement and use subtype infra for this.
|
|
// For now, check a specific case.
|
|
// If the rhs is not OptionalType, then we know it cannot be None.
|
|
if (lhsType.isa<Torch::NoneType>() && !rhsType.isa<Torch::OptionalType>()) {
|
|
return IntegerAttr::get(IntegerType::get(op->getContext(), 1),
|
|
!equalIsTrue);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__RangeLengthOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__RangeLengthOp::fold(FoldAdaptor adaptor) {
|
|
auto lo = adaptor.getLo();
|
|
auto hi = adaptor.getHi();
|
|
auto step = adaptor.getStep();
|
|
if (!lo || !hi || !step)
|
|
return nullptr;
|
|
auto loInt = lo.dyn_cast_or_null<IntegerAttr>().getValue();
|
|
auto hiInt = hi.dyn_cast_or_null<IntegerAttr>().getValue();
|
|
auto stepInt = step.dyn_cast_or_null<IntegerAttr>().getValue();
|
|
// TODO: Implement folding for negative steps.
|
|
if (stepInt.isNegative())
|
|
return nullptr;
|
|
// From Python language spec:
|
|
// r[i] = lo + step*i such that i >= 0 and r[i] < hi
|
|
// So maximize `i` such that lo + step * i < hi
|
|
// ==> i == ceildiv(hi - lo, step)
|
|
return IntegerAttr::get(lo.cast<TypedAttr>().getType(),
|
|
llvm::APIntOps::RoundingSDiv(hiInt - loInt, stepInt,
|
|
APInt::Rounding::UP));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__DeriveIndexOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__DeriveIndexOp::fold(FoldAdaptor adaptor) {
|
|
auto index = adaptor.getIndex();
|
|
auto start = adaptor.getStart();
|
|
auto step = adaptor.getStep();
|
|
if (!index || !start || !step)
|
|
return nullptr;
|
|
auto indexInt = index.dyn_cast_or_null<IntegerAttr>().getValue();
|
|
auto startInt = start.dyn_cast_or_null<IntegerAttr>().getValue();
|
|
auto stepInt = step.dyn_cast_or_null<IntegerAttr>().getValue();
|
|
return IntegerAttr::get(index.cast<TypedAttr>().getType(),
|
|
startInt + stepInt * indexInt);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Is__Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__Is__Op::fold(FoldAdaptor adaptor) {
|
|
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Isnot__Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__Isnot__Op::fold(FoldAdaptor adaptor) {
|
|
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/false);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Not__Op
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__Not__Op::fold(FoldAdaptor adaptor) {
|
|
bool value;
|
|
if (!matchPattern(getOperand(), m_TorchConstantBool(&value)))
|
|
return nullptr;
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 1), !value);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenNeBoolOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenNeBoolOp::fold(FoldAdaptor adaptor) {
|
|
if (getOperand(0) == getOperand(1))
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 1), false);
|
|
|
|
bool a, b;
|
|
if (!matchPattern(getOperand(0), m_TorchConstantBool(&a)))
|
|
return nullptr;
|
|
if (!matchPattern(getOperand(1), m_TorchConstantBool(&b)))
|
|
return nullptr;
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 1), a != b);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSqueezeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSqueezeOp::fold(FoldAdaptor adaptor) {
|
|
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
|
|
if (tensorType.hasSizes() && tensorType.getSizes().size() == 0)
|
|
return getOperand();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSqueezeDimOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSqueezeDimOp::fold(FoldAdaptor adaptor) {
|
|
if (auto tensorType = getOperand(0).getType().dyn_cast<BaseTensorType>()) {
|
|
if (tensorType.hasSizes() && tensorType.getSizes().size() == 0)
|
|
return getOperand(0);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenRoundOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenRoundOp::fold(FoldAdaptor adaptor) {
|
|
if (auto selfType = getSelf().getType().dyn_cast<BaseTensorType>()) {
|
|
if (selfType.hasDtype() && selfType.getDtype().isa<mlir::IntegerType>())
|
|
return getSelf();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenTypeAsOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenTypeAsOp::fold(FoldAdaptor adaptor) {
|
|
Type inType = getSelf().getType();
|
|
Type newType = getOther().getType();
|
|
|
|
if (inType == newType)
|
|
return getSelf();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenToDtypeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenToDtypeOp::fold(FoldAdaptor adaptor) {
|
|
bool nonBlocking, copyArg;
|
|
// The non_blocking arg must be `False`.
|
|
if (!matchPattern(getNonBlocking(), m_TorchConstantBool(&nonBlocking)) ||
|
|
nonBlocking)
|
|
return nullptr;
|
|
// The copy arg must be `False`.
|
|
if (!matchPattern(getCopy(), m_TorchConstantBool(©Arg)) || copyArg)
|
|
return nullptr;
|
|
// The memory_format arg must be `none`.
|
|
if (!getMemoryFormat().getType().isa<Torch::NoneType>())
|
|
return nullptr;
|
|
|
|
auto inputType = getSelf().getType().cast<BaseTensorType>();
|
|
auto resType = getType().cast<BaseTensorType>();
|
|
// If the types aren't equal, then we can't fold.
|
|
if (inputType != resType)
|
|
return nullptr;
|
|
// If the type does not have a statically known dtype, then we cannot fold.
|
|
// For example, folding `tensor<*,unk>` to `tensor<*,unk>` would be wrong,
|
|
// since the `unk` could be dynamically different for the operand and result.
|
|
if (!inputType.hasDtype())
|
|
return nullptr;
|
|
// Fold when both the input tensor and result are of the same type.
|
|
return getOperand(0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenToDtypeLayoutOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenToDtypeLayoutOp::fold(FoldAdaptor adaptor) {
|
|
// The pin_memory arg should be either constant `False` or `none`.
|
|
if (!getPinMemory().getType().isa<Torch::NoneType>()) {
|
|
bool pinMemory;
|
|
if (!matchPattern(getPinMemory(), m_TorchConstantBool(&pinMemory)))
|
|
return nullptr;
|
|
else if (pinMemory)
|
|
return nullptr;
|
|
}
|
|
|
|
// The non_blocking arg should be constant `False`.
|
|
bool nonBlocking;
|
|
if (!matchPattern(getNonBlocking(), m_TorchConstantBool(&nonBlocking)))
|
|
return nullptr;
|
|
else if (nonBlocking)
|
|
return nullptr;
|
|
|
|
// The copy arg should be constant `False`.
|
|
bool copyArg;
|
|
if (!matchPattern(getCopy(), m_TorchConstantBool(©Arg)))
|
|
return nullptr;
|
|
else if (copyArg)
|
|
return nullptr;
|
|
|
|
// The device arg must be `none`.
|
|
if (!getDevice().getType().isa<Torch::NoneType>())
|
|
return nullptr;
|
|
|
|
// The memory_format arg must be `none`.
|
|
if (!getMemoryFormat().getType().isa<Torch::NoneType>())
|
|
return nullptr;
|
|
|
|
auto inputType = getSelf().getType().cast<BaseTensorType>();
|
|
auto resType = getType().cast<BaseTensorType>();
|
|
// If the types aren't equal, then we can't fold.
|
|
if (inputType != resType)
|
|
return nullptr;
|
|
// If the type does not have a statically known dtype, then we cannot fold.
|
|
// For example, folding `tensor<*,unk>` to `tensor<*,unk>` would be wrong,
|
|
// since the `unk` could be dynamically different for the operand and result.
|
|
if (!inputType.hasDtype())
|
|
return nullptr;
|
|
|
|
// The layout arg should be either `none` or `0` i.e. strided.
|
|
if (!getLayout().getType().isa<Torch::NoneType>()) {
|
|
int64_t tensorLayout;
|
|
if (!matchPattern(getLayout(), m_TorchConstantInt(&tensorLayout)))
|
|
return nullptr;
|
|
else if (tensorLayout != torch_upstream::Layout::Strided)
|
|
return nullptr;
|
|
}
|
|
|
|
// Fold when both the input tensor and result are of the same type and the
|
|
// layout arg is strided.
|
|
return getOperand(0);
|
|
}
|
|
|
|
void AtenToDtypeLayoutOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
// `to.dtype_layout` -> `to.device/to.dtype` if layout is none and pin memory
|
|
// is false
|
|
patterns.add(+[](AtenToDtypeLayoutOp op, PatternRewriter &rewriter) {
|
|
// The pin_memory arg should be either constant `False` or `none`.
|
|
if (!op.getPinMemory().getType().isa<Torch::NoneType>()) {
|
|
bool pinMemory;
|
|
if (!matchPattern(op.getPinMemory(), m_TorchConstantBool(&pinMemory)))
|
|
return failure();
|
|
else if (pinMemory)
|
|
return failure();
|
|
}
|
|
|
|
// The layout arg should be either `none` or `0` i.e. strided.
|
|
if (!op.getLayout().getType().isa<Torch::NoneType>()) {
|
|
int64_t tensorLayout;
|
|
if (!matchPattern(op.getLayout(), m_TorchConstantInt(&tensorLayout)))
|
|
return failure();
|
|
else if (tensorLayout != torch_upstream::Layout::Strided)
|
|
return failure();
|
|
}
|
|
|
|
if (op.getDevice().getType().isa<Torch::NoneType>()) {
|
|
// The device arg is `none`. Rewrite to to.dtype.
|
|
AtenToDtypeOp toDtype = rewriter.create<AtenToDtypeOp>(
|
|
op.getLoc(), op.getType(), op.getSelf(), op.getDtype(),
|
|
op.getNonBlocking(), op.getCopy(), op.getMemoryFormat());
|
|
rewriter.replaceOp(op, toDtype->getResults());
|
|
} else {
|
|
// The device arg is not `none`. Rewrite to to.device.
|
|
AtenToDeviceOp toDevice = rewriter.create<AtenToDeviceOp>(
|
|
op.getLoc(), op.getType(), op.getSelf(), op.getDevice(),
|
|
op.getDtype(), op.getNonBlocking(), op.getCopy(),
|
|
op.getMemoryFormat());
|
|
rewriter.replaceOp(op, toDevice->getResults());
|
|
}
|
|
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenViewOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenViewOp::fold(FoldAdaptor adaptor) {
|
|
auto inputType = getOperand(0).getType().dyn_cast<BaseTensorType>();
|
|
if (!inputType || !inputType.hasSizes() || inputType.getSizes().size() != 1)
|
|
return nullptr;
|
|
auto resType = getType().dyn_cast<BaseTensorType>();
|
|
if (!resType || !resType.hasSizes() || resType.getSizes().size() != 1)
|
|
return nullptr;
|
|
// Fold when both the input tensor and result are unity rank tensors.
|
|
return getOperand(0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimsViewOfOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult PrimsViewOfOp::fold(FoldAdaptor adaptor) {
|
|
// Always fold the op with its only input operand.
|
|
return getOperand();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenDimOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenDimOp::fold(FoldAdaptor adaptor) {
|
|
if (auto tensorType = getOperand().getType().dyn_cast<BaseTensorType>()) {
|
|
if (tensorType.hasSizes())
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 64),
|
|
tensorType.getSizes().size());
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenLenTOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenLenTOp::fold(FoldAdaptor adaptor) {
|
|
// `len([1,1,1])` -> `3`, if it is not mutated.
|
|
if (auto listConstruct =
|
|
getOperand().getDefiningOp<Torch::PrimListConstructOp>()) {
|
|
if (!isListPotentiallyMutated(listConstruct)) {
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 64),
|
|
listConstruct.getNumOperands());
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void AtenLenTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
// `len(t.size())` -> `t.ndim`
|
|
patterns.add(+[](AtenLenTOp op, PatternRewriter &rewriter) {
|
|
auto size = op.getOperand().getDefiningOp<AtenSizeOp>();
|
|
if (!size)
|
|
return rewriter.notifyMatchFailure(op, "operand not AtenSizeOp");
|
|
rewriter.replaceOpWithNewOp<AtenDimOp>(op, size.getOperand());
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenLenStrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenLenStrOp::fold(FoldAdaptor adaptor) {
|
|
if (auto stringConstruct = getS().getDefiningOp<ConstantStrOp>())
|
|
return getI64IntegerAttr(getContext(),
|
|
stringConstruct.getValueAttr().getValue().size());
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
LogicalResult rewrite0DBinaryTensorOp(Operation *op,
|
|
PatternRewriter &rewriter) {
|
|
Location loc = op->getLoc();
|
|
// This canonicalization pattern also includes aten div/mul/add/sub ops
|
|
// between tensor and scalar, like aten.add.Scalar op
|
|
if (op->getNumOperands() < 2) {
|
|
return failure();
|
|
}
|
|
auto lhs = getScalarIntValue(op->getOperand(0), loc, rewriter);
|
|
auto rhs = getScalarIntValue(op->getOperand(1), loc, rewriter);
|
|
auto outType = op->getResult(0).getType();
|
|
|
|
if (!lhs || !rhs) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only int scalar lhs or rhs is supported");
|
|
}
|
|
if (isa<AtenSubTensorOp, AtenSubScalarOp, AtenRsubScalarOp, AtenAddTensorOp,
|
|
AtenAddScalarOp>(op)) {
|
|
Value alpha = getScalarIntValue(op->getOperand(2), loc, rewriter);
|
|
if (!alpha) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only int scalar alpha is supported");
|
|
}
|
|
if (isa<AtenRsubScalarOp>(op))
|
|
lhs = rewriter.create<AtenMulIntOp>(loc, lhs, alpha);
|
|
else
|
|
rhs = rewriter.create<AtenMulIntOp>(loc, rhs, alpha);
|
|
}
|
|
|
|
if (isa<AtenDivTensorModeOp>(op)) {
|
|
// None rounding mode
|
|
if (op->getOperand(2).getType().isa<Torch::NoneType>()) {
|
|
Value quotient = rewriter.create<AtenDivOp>(loc, lhs, rhs);
|
|
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
|
|
quotient);
|
|
return success();
|
|
}
|
|
std::string roundingMode;
|
|
if (!matchPattern(op->getOperand(2), m_TorchConstantStr(roundingMode))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only None, 'floor' or 'trunc' rounding mode is supported");
|
|
}
|
|
if (roundingMode == "floor") {
|
|
Value quotient = rewriter.create<AtenFloordivIntOp>(loc, lhs, rhs);
|
|
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
|
|
quotient);
|
|
return success();
|
|
}
|
|
// For "trunc" rounding mode, insted of canonicalizing it into
|
|
// aten.abs, aten.floor, aten.sign and aten.mul.int ops, which adds
|
|
// complexity but helps little in optimization (such as constant folding),
|
|
// we are trying to fold it.
|
|
if (roundingMode == "trunc") {
|
|
int64_t lhsInt;
|
|
int64_t rhsInt;
|
|
if (!matchPattern(lhs, m_TorchConstantInt(&lhsInt))) {
|
|
return failure();
|
|
}
|
|
if (!matchPattern(rhs, m_TorchConstantInt(&rhsInt))) {
|
|
return failure();
|
|
}
|
|
|
|
int64_t result = (int64_t)std::trunc((double)lhsInt / rhsInt);
|
|
Value resultScalar = rewriter.create<ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(result));
|
|
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
|
|
resultScalar);
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
|
|
Value result;
|
|
// Other Add/Sub/Mul ops
|
|
if (isa<AtenAddTensorOp, AtenAddScalarOp>(op)) {
|
|
result = rewriter.create<AtenAddIntOp>(loc, lhs, rhs);
|
|
} else if (isa<AtenSubScalarOp, AtenSubTensorOp>(op)) {
|
|
result = rewriter.create<AtenSubIntOp>(loc, lhs, rhs);
|
|
} else if (isa<AtenRsubScalarOp>(op)) {
|
|
result = rewriter.create<AtenSubIntOp>(loc, rhs, lhs);
|
|
} else if (isa<AtenMulScalarOp, AtenMulTensorOp>(op)) {
|
|
result = rewriter.create<AtenMulIntOp>(loc, lhs, rhs);
|
|
}
|
|
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType, result);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenAddTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenAddTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenAddTensorOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenAddScalarOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenAddScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenAddScalarOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSubTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenSubTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenSubTensorOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSubScalarOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenSubScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenSubScalarOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenRSubScalarOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenRsubScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenRsubScalarOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenMulTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenMulTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenMulTensorOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenMulScalarOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenMulScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenMulScalarOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenDivTensorModeOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenDivTensorModeOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
patterns.add(+[](AtenDivTensorModeOp op, PatternRewriter &rewriter) {
|
|
return rewrite0DBinaryTensorOp(op, rewriter);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenScalarImplicitOp
|
|
//===----------------------------------------------------------------------===//
|
|
void AtenScalarImplicitOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
patterns.add(+[](AtenScalarImplicitOp op, PatternRewriter &rewriter) {
|
|
Location loc = op.getLoc();
|
|
Value a = op.getA();
|
|
auto outType = op.getResult().getType();
|
|
Value scalarValue = getScalarIntValue(a, loc, rewriter);
|
|
if (!scalarValue)
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(op, outType, scalarValue);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSizeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Traces at most 6 parents of `value` to determine the tensor type with known
|
|
// dimension size or returns failure if such a type was not found. If `dim` is
|
|
// `None`, then all dimension's sizes must be known.
|
|
static FailureOr<BaseTensorType>
|
|
traceKnownSizeTensorType(Value value, std::optional<int64_t> dim) {
|
|
// Function to check if we found a type that contains the queried information.
|
|
auto foundType = [](BaseTensorType tensorType, std::optional<int64_t>(dim)) {
|
|
if (!tensorType.hasSizes())
|
|
return false;
|
|
|
|
if (dim == std::nullopt)
|
|
return tensorType.areAllSizesKnown();
|
|
|
|
// If the dimension value is negative, then convert it to a positive value.
|
|
ArrayRef<int64_t> sizes = tensorType.getSizes();
|
|
*dim = toPositiveDim(*dim, sizes.size());
|
|
return isValidDim(*dim, sizes.size()) && sizes[*dim] != kUnknownSize;
|
|
};
|
|
|
|
// Limit the loop count to 6 to avoid indefinite compilation times from
|
|
// unbounded IR traversals.
|
|
for (auto idx = 0; idx < 6; ++idx) {
|
|
if (!value || !value.getType().isa<BaseTensorType>())
|
|
return failure();
|
|
|
|
auto tensorType = value.getType().cast<BaseTensorType>();
|
|
if (foundType(tensorType, dim))
|
|
return tensorType;
|
|
|
|
auto op = value.getDefiningOp();
|
|
if (!op || !isa<CopyToValueTensorOp, CopyToNonValueTensorOp,
|
|
TensorStaticInfoCastOp>(op))
|
|
return failure();
|
|
|
|
// In all ops of interest to us, the source tensor is operand #0.
|
|
value = op->getOperand(0);
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
|
|
void AtenSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
|
|
auto type = traceKnownSizeTensorType(op.getOperand(), std::nullopt);
|
|
if (failed(type))
|
|
return rewriter.notifyMatchFailure(op, "all sizes not known");
|
|
SmallVector<Value> listElements;
|
|
for (int64_t size : type->getSizes()) {
|
|
listElements.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
op->getLoc(), rewriter.getI64IntegerAttr(size)));
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
|
|
op, Torch::ListType::get(rewriter.getType<Torch::IntType>()),
|
|
listElements);
|
|
return success();
|
|
});
|
|
// One-off pattern to erase if dead.
|
|
// TODO: Use the effects infra to express the semantics of this op and enable
|
|
// a centralized "erase if dead" canonicalization.
|
|
// Specifically, we need to mark the op as only MemoryEffects::Allocate
|
|
// so that `mlir::wouldOpBeTriviallyDead` does the right thing.
|
|
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
|
|
if (!op.use_empty())
|
|
return failure();
|
|
rewriter.eraseOp(op);
|
|
return failure();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSizeIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSizeIntOp::fold(FoldAdaptor adaptor) {
|
|
int64_t dim;
|
|
if (!matchPattern(this->getDim(), m_TorchConstantInt(&dim)))
|
|
return nullptr;
|
|
auto type = traceKnownSizeTensorType(this->getSelf(), dim);
|
|
if (failed(type))
|
|
return nullptr;
|
|
ArrayRef<int64_t> sizes = type->getSizes();
|
|
dim = toPositiveDim(dim, sizes.size());
|
|
if (!isValidDim(dim, sizes.size()))
|
|
return nullptr;
|
|
return IntegerAttr::get(IntegerType::get(getContext(), 64), sizes[dim]);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenGtIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static IntegerAttr getI1IntegerAttr(MLIRContext *context, bool value) {
|
|
return IntegerAttr::get(IntegerType::get(context, 1),
|
|
static_cast<int64_t>(value));
|
|
}
|
|
|
|
using ConstantFloatComparator = std::function<bool(double, double)>;
|
|
template <typename OpTy>
|
|
static OpFoldResult
|
|
floatComparatorFoldHelper(OpTy op, ConstantFloatComparator comparator) {
|
|
if (op.getOperand(0) == op.getOperand(1))
|
|
return getI1IntegerAttr(op.getContext(), comparator(0, 0));
|
|
|
|
double lhs, rhs;
|
|
if (!matchPattern(op.getOperand(0), m_TorchConstantFloat(&lhs)) ||
|
|
!matchPattern(op.getOperand(1), m_TorchConstantFloat(&rhs)))
|
|
return nullptr;
|
|
|
|
return getI1IntegerAttr(op.getContext(), comparator(lhs, rhs));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenLtFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenLtFloatOp::fold(FoldAdaptor adaptor) {
|
|
return floatComparatorFoldHelper(*this,
|
|
[](double a, double b) { return a < b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenGtFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenGtFloatOp::fold(FoldAdaptor adaptor) {
|
|
return floatComparatorFoldHelper(*this,
|
|
[](double a, double b) { return a > b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenGeFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenGeFloatOp::fold(FoldAdaptor adaptor) {
|
|
return floatComparatorFoldHelper(*this,
|
|
[](double a, double b) { return a >= b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenEqFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenEqFloatOp::fold(FoldAdaptor adaptor) {
|
|
return floatComparatorFoldHelper(*this,
|
|
[](double a, double b) { return a == b; });
|
|
}
|
|
|
|
using ConstantIntComparator = std::function<bool(int64_t, int64_t)>;
|
|
template <typename OpTy>
|
|
static OpFoldResult intComparatorFoldHelper(OpTy op,
|
|
ConstantIntComparator comparator) {
|
|
|
|
Value lhsValue = op->getOperand(0);
|
|
Value rhsValue = op->getOperand(1);
|
|
if (lhsValue == rhsValue)
|
|
return getI1IntegerAttr(op.getContext(), comparator(0, 0));
|
|
|
|
int64_t lhs, rhs;
|
|
bool lhsIsConstant = matchPattern(lhsValue, m_TorchConstantInt(&lhs));
|
|
bool rhsIsConstant = matchPattern(rhsValue, m_TorchConstantInt(&rhs));
|
|
if (lhsIsConstant && rhsIsConstant)
|
|
return getI1IntegerAttr(op.getContext(), comparator(lhs, rhs));
|
|
|
|
// Ensure that if there is a constant, it is on the right.
|
|
if (lhsIsConstant && !rhsIsConstant) {
|
|
std::swap(lhs, rhs);
|
|
std::swap(lhsValue, rhsValue);
|
|
std::swap(lhsIsConstant, rhsIsConstant);
|
|
auto newComparator = [comparator](int64_t lhs, int64_t rhs) {
|
|
return comparator(rhs, lhs);
|
|
};
|
|
comparator = newComparator;
|
|
}
|
|
|
|
// Fold comparisons of AtenSizeIntOp against negative values.
|
|
// AtenSizeIntOp is known to always be non-negative.
|
|
if (rhsIsConstant && rhs < 0) {
|
|
// We can return `comparator(0, -1)` here because of the property:
|
|
// If x >= 0 && y < 0, then:
|
|
// - cmp(x, y) == cmp(x + 1, y)
|
|
// - cmp(x, y) == cmp(x, y - 1)
|
|
// By induction all cases here are covered.
|
|
if (auto size = lhsValue.getDefiningOp<AtenSizeIntOp>())
|
|
return getI1IntegerAttr(op->getContext(), comparator(0, -1));
|
|
}
|
|
|
|
// Fold comparisons of AtenSizeIntOp against 0:
|
|
// - torch.aten.size.int >= 0 ==> True.
|
|
// - torch.aten.size.int < 0 ==> False.
|
|
// (and the operand-swapped versions of the above)
|
|
if (rhsIsConstant && rhs == 0) {
|
|
if (auto size = lhsValue.getDefiningOp<AtenSizeIntOp>()) {
|
|
// >= 0 comparison.
|
|
if (comparator(0, 0) && comparator(1, 0))
|
|
return getI1IntegerAttr(op->getContext(), true);
|
|
// < 0 comparison.
|
|
if (!comparator(0, 0) && comparator(-1, 0) && !comparator(1, 0))
|
|
return getI1IntegerAttr(op->getContext(), false);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenDetachOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenDetachOp::fold(FoldAdaptor adaptor) { return getSelf(); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenNeIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenNeIntOp::fold(FoldAdaptor adaptor) {
|
|
return intComparatorFoldHelper(*this,
|
|
[](int64_t a, int64_t b) { return a != b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenEqIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenEqIntOp::fold(FoldAdaptor adaptor) {
|
|
return intComparatorFoldHelper(*this,
|
|
[](int64_t a, int64_t b) { return a == b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenEqStrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenEqStrOp::fold(FoldAdaptor adaptor) {
|
|
if (getOperand(0) == getOperand(1))
|
|
return getI1IntegerAttr(getContext(), true);
|
|
|
|
auto aStr = getA().getDefiningOp<ConstantStrOp>();
|
|
auto bStr = getB().getDefiningOp<ConstantStrOp>();
|
|
|
|
if (aStr && bStr)
|
|
return getI1IntegerAttr(getContext(), aStr == bStr);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenLtIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenLtIntOp::fold(FoldAdaptor adaptor) {
|
|
return intComparatorFoldHelper(*this,
|
|
[](int64_t a, int64_t b) { return a < b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenLeIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenLeIntOp::fold(FoldAdaptor adaptor) {
|
|
return intComparatorFoldHelper(*this,
|
|
[](int64_t a, int64_t b) { return a <= b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenGtIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenGtIntOp::fold(FoldAdaptor adaptor) {
|
|
return intComparatorFoldHelper(*this,
|
|
[](int64_t a, int64_t b) { return a > b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenGeIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenGeIntOp::fold(FoldAdaptor adaptor) {
|
|
return intComparatorFoldHelper(*this,
|
|
[](int64_t a, int64_t b) { return a >= b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenBoolFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenBoolFloatOp::fold(FoldAdaptor adaptor) {
|
|
double c;
|
|
if (matchPattern(getOperand(), m_TorchConstantFloat(&c)))
|
|
return getI1IntegerAttr(getContext(), c != 0.0);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenBoolIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenBoolIntOp::fold(FoldAdaptor adaptor) {
|
|
int64_t c;
|
|
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
|
|
return getI1IntegerAttr(getContext(), c != 0);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenFloatScalarOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenFloatScalarOp::fold(FoldAdaptor adaptor) {
|
|
// Constant fold int -> float conversion.
|
|
if (auto integerAttr = adaptor.getA().dyn_cast_or_null<IntegerAttr>()) {
|
|
return FloatAttr::get(
|
|
mlir::Float64Type::get(getContext()),
|
|
static_cast<double>(integerAttr.getValue().getSExtValue()));
|
|
}
|
|
// If the input is float type already, the op is an identity.
|
|
if (getType() == getOperand().getType())
|
|
return getOperand();
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenIntFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenIntFloatOp::fold(FoldAdaptor adaptor) {
|
|
// Constant fold float -> int conversion.
|
|
if (auto floatAttr = adaptor.getA().dyn_cast_or_null<FloatAttr>()) {
|
|
return IntegerAttr::get(
|
|
mlir::IntegerType::get(getContext(), 64),
|
|
static_cast<int64_t>(floatAttr.getValue().convertToDouble()));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenIntScalarOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenIntScalarOp::fold(FoldAdaptor adaptor) {
|
|
// Constant fold float -> int conversion.
|
|
if (auto floatAttr = adaptor.getA().dyn_cast_or_null<FloatAttr>()) {
|
|
return IntegerAttr::get(
|
|
mlir::IntegerType::get(getContext(), 64),
|
|
static_cast<long>(floatAttr.getValue().convertToDouble()));
|
|
}
|
|
// If the input is int type already, the op is an identity.
|
|
if (getType() == getOperand().getType())
|
|
return getOperand();
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenIntBoolOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenIntBoolOp::fold(FoldAdaptor adaptor) {
|
|
bool b;
|
|
if (matchPattern(getOperand(), m_TorchConstantBool(&b))) {
|
|
return getI64IntegerAttr(getContext(), static_cast<long>(b));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSortIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AtenSortIntOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenSortIntOp op, PatternRewriter &rewriter) {
|
|
SmallVector<int64_t> listElements;
|
|
if (!matchPattern(op.getSelf(), m_TorchListOfConstantInts(listElements)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "all input list elements must be constant ints");
|
|
bool reverse;
|
|
if (!matchPattern(op.getReverse(), m_TorchConstantBool(&reverse)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Expected reverse arg to be constant bool.");
|
|
|
|
std::sort(listElements.begin(), listElements.end());
|
|
if (reverse)
|
|
std::reverse(listElements.begin(), listElements.end());
|
|
|
|
SmallVector<Value> sortedListElements;
|
|
for (int64_t elem : listElements)
|
|
sortedListElements.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
op->getLoc(), rewriter.getI64IntegerAttr(elem)));
|
|
Value result = rewriter.create<Torch::PrimListConstructOp>(
|
|
op->getLoc(), Torch::ListType::get(rewriter.getType<Torch::IntType>()),
|
|
sortedListElements);
|
|
|
|
op.getSelf().replaceAllUsesWith(result);
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NonValueTensorLiteralOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult NonValueTensorLiteralOp::inferReturnTypes(
|
|
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
|
|
if (!attr)
|
|
return failure();
|
|
RankedTensorType tensorType = attr.getType().cast<RankedTensorType>();
|
|
NonValueTensorType returnType =
|
|
NonValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
|
|
tensorType.getElementType());
|
|
inferredReturnTypes.push_back(returnType);
|
|
return success();
|
|
}
|
|
|
|
static bool areSizesAndDtypesCompatible(BaseTensorType a, BaseTensorType b) {
|
|
if (a.hasSizes() && b.hasSizes()) {
|
|
if (failed(verifyCompatibleShape(makeShapeLLVMCompatible(a.getSizes()),
|
|
makeShapeLLVMCompatible(b.getSizes()))))
|
|
return false;
|
|
}
|
|
if (a.hasDtype() && b.hasDtype()) {
|
|
if (a.getDtype() != b.getDtype())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NonValueTensorLiteralOp::isCompatibleReturnTypes(TypeRange inferred,
|
|
TypeRange actual) {
|
|
if (!actual[0].isa<BaseTensorType>())
|
|
return false;
|
|
return areSizesAndDtypesCompatible(inferred[0].cast<BaseTensorType>(),
|
|
actual[0].cast<BaseTensorType>());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ValueTensorLiteralOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult ValueTensorLiteralOp::inferReturnTypes(
|
|
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto attr = attributes.get("value").dyn_cast_or_null<ElementsAttr>();
|
|
if (!attr)
|
|
return failure();
|
|
RankedTensorType tensorType = attr.getType().cast<RankedTensorType>();
|
|
ValueTensorType returnType =
|
|
ValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
|
|
tensorType.getElementType());
|
|
inferredReturnTypes.push_back(returnType);
|
|
return success();
|
|
}
|
|
|
|
OpFoldResult ValueTensorLiteralOp::fold(FoldAdaptor adaptor) {
|
|
return getValueAttr();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// TensorStaticInfoCast
|
|
//----------------------------------------------------------------------------//
|
|
|
|
bool TensorStaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs,
|
|
mlir::TypeRange outputs) {
|
|
return areSizesAndDtypesCompatible(inputs[0].cast<BaseTensorType>(),
|
|
outputs[0].cast<BaseTensorType>());
|
|
}
|
|
|
|
void TensorStaticInfoCastOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
patterns.add(+[](TensorStaticInfoCastOp op, PatternRewriter &rewriter) {
|
|
auto reverseCast =
|
|
op.getOperand().getDefiningOp<Torch::TensorStaticInfoCastOp>();
|
|
if (!reverseCast || reverseCast.getOperand().getType() != op.getType())
|
|
return failure();
|
|
|
|
rewriter.replaceOp(op, reverseCast.getOperand());
|
|
return success();
|
|
});
|
|
patterns.add(+[](TensorStaticInfoCastOp op, PatternRewriter &rewriter) {
|
|
if (isValidSubtype(op.getOperand().getType(), op.getType())) {
|
|
SmallVector<std::reference_wrapper<OpOperand>> usesToChange(
|
|
llvm::make_filter_range(op->getUses(), [](OpOperand &operand) {
|
|
return operand.getOwner()
|
|
->hasTrait<mlir::torch::Torch::OpTrait::AllowsTypeRefinement>();
|
|
}));
|
|
|
|
if (usesToChange.empty())
|
|
return failure();
|
|
|
|
for (OpOperand &use : usesToChange) {
|
|
Operation *user = use.getOwner();
|
|
user->setOperand(use.getOperandNumber(), op.getOperand());
|
|
}
|
|
|
|
return success();
|
|
}
|
|
return failure();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CopyToNonValueTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult CopyToNonValueTensorOp::verify() {
|
|
auto resultType = getResult().getType().cast<BaseTensorType>();
|
|
auto operandType = getOperand().getType().cast<BaseTensorType>();
|
|
if (!resultType.hasSameSizesAndDtype(operandType))
|
|
return emitError() << "operand and result must have same sizes and dtype";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult CopyToNonValueTensorOp::inferReturnTypes(
|
|
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto resultType = operands[0].getType().cast<ValueTensorType>();
|
|
inferredReturnTypes.push_back(resultType.getWithoutValueSemantics());
|
|
return success();
|
|
}
|
|
|
|
void CopyToNonValueTensorOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
effects.emplace_back(MemoryEffects::Allocate::get(), getResult());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// CopyToValueTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult CopyToValueTensorOp::verify() {
|
|
auto resultType = getResult().getType().cast<BaseTensorType>();
|
|
auto operandType = getOperand().getType().cast<BaseTensorType>();
|
|
if (!resultType.hasSameSizesAndDtype(operandType))
|
|
return emitError() << "operand and result must have same sizes and dtype";
|
|
return success();
|
|
}
|
|
|
|
LogicalResult CopyToValueTensorOp::inferReturnTypes(
|
|
MLIRContext *context, std::optional<Location> location, ValueRange operands,
|
|
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
|
|
SmallVectorImpl<Type> &inferredReturnTypes) {
|
|
auto resultType = operands[0].getType().cast<NonValueTensorType>();
|
|
inferredReturnTypes.push_back(resultType.getWithValueSemantics());
|
|
return success();
|
|
}
|
|
|
|
void CopyToValueTensorOp::getEffects(
|
|
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
|
|
&effects) {
|
|
effects.emplace_back(MemoryEffects::Read::get(), getOperand());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantNoneOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult ConstantNoneOp::fold(FoldAdaptor adaptor) {
|
|
return TypeAttr::get(Torch::NoneType::get(getContext()));
|
|
}
|
|
|
|
void ConstantNoneOp::getAsmResultNames(
|
|
function_ref<void(Value, StringRef)> setNameFn) {
|
|
setNameFn(getResult(), "none");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantStrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult ConstantStrOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }
|
|
|
|
void ConstantStrOp::getAsmResultNames(
|
|
function_ref<void(Value, StringRef)> setNameFn) {
|
|
setNameFn(getResult(), "str");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantDeviceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ConstantDeviceOp::getAsmResultNames(
|
|
function_ref<void(Value, StringRef)> setNameFn) {
|
|
setNameFn(getResult(), getValue());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult ConstantIntOp::parse(OpAsmParser &parser, OperationState &result) {
|
|
Builder builder(result.getContext());
|
|
result.addTypes(builder.getType<Torch::IntType>());
|
|
if (parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
int64_t value;
|
|
if (parser.parseInteger(value))
|
|
return failure();
|
|
result.addAttribute("value", builder.getI64IntegerAttr(value));
|
|
return success();
|
|
}
|
|
|
|
void ConstantIntOp::print(OpAsmPrinter &p) {
|
|
p << " ";
|
|
p << getValueAttr().getInt();
|
|
p.printOptionalAttrDict((*this)->getAttrs(), {"value"});
|
|
}
|
|
|
|
OpFoldResult Torch::ConstantIntOp::fold(FoldAdaptor adaptor) {
|
|
return getValueAttr();
|
|
}
|
|
|
|
void Torch::ConstantIntOp::getAsmResultNames(
|
|
function_ref<void(Value, StringRef)> setNameFn) {
|
|
SmallVector<char> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
os << "int" << getValueAttr().getInt();
|
|
setNameFn(getResult(), os.str());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Torch::ConstantFloatOp::fold(FoldAdaptor adaptor) {
|
|
return getValueAttr();
|
|
}
|
|
|
|
void Torch::ConstantFloatOp::getAsmResultNames(
|
|
function_ref<void(Value, StringRef)> setNameFn) {
|
|
// Calculate a stringified version of the number, compatible with MLIR
|
|
// identifier syntax. (in practice, this just removes the '+' from 'e+' in
|
|
// float string representation).
|
|
SmallVector<char> buf;
|
|
getValue().toString(buf, /*FormatPrecision=*/6, /*FormatMaxPadding=*/0,
|
|
/*TruncateZero=*/false);
|
|
auto isValidMLIRIdentifierChar = [](char c) {
|
|
return isalpha(c) || isdigit(c) || c == '_' || c == '$' || c == '.' ||
|
|
c == '-';
|
|
};
|
|
auto numberStr = llvm::to_vector<16>(
|
|
llvm::make_filter_range(buf, isValidMLIRIdentifierChar));
|
|
|
|
// Construct the identifier string.
|
|
buf.clear();
|
|
llvm::append_range(buf, StringRef("float"));
|
|
llvm::append_range(buf, numberStr);
|
|
setNameFn(getResult(), StringRef(buf.data(), buf.size()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantNumberOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Torch::ConstantNumberOp::fold(FoldAdaptor adaptor) {
|
|
return getValueAttr();
|
|
}
|
|
|
|
void Torch::ConstantNumberOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
patterns.add(+[](Torch::ConstantNumberOp op, PatternRewriter &rewriter) {
|
|
Location loc = op->getLoc();
|
|
|
|
Value constValue;
|
|
Attribute value = op.getValueAttr();
|
|
if (auto floatValue = value.dyn_cast<mlir::FloatAttr>()) {
|
|
constValue = rewriter.create<Torch::ConstantFloatOp>(loc, floatValue);
|
|
} else if (auto intValue = value.dyn_cast<mlir::IntegerAttr>()) {
|
|
constValue = rewriter.create<Torch::ConstantIntOp>(loc, intValue);
|
|
} else {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(op, op.getType(),
|
|
constValue);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ConstantBoolOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Torch::ConstantBoolOp::fold(FoldAdaptor adaptor) {
|
|
return getValueAttr();
|
|
}
|
|
|
|
void Torch::ConstantBoolOp::getAsmResultNames(
|
|
function_ref<void(Value, StringRef)> setNameFn) {
|
|
setNameFn(getResult(), getValue() ? "true" : "false");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimUncheckedCastOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool PrimUncheckedCastOp::areCastCompatible(mlir::TypeRange inputs,
|
|
mlir::TypeRange outputs) {
|
|
return isValidSubtype(outputs[0], inputs[0]);
|
|
}
|
|
|
|
OpFoldResult PrimUncheckedCastOp::fold(FoldAdaptor adaptor) {
|
|
if (auto derefineOp = getX().getDefiningOp<Torch::DerefineOp>()) {
|
|
if (derefineOp.getOperand().getType() == getType())
|
|
return derefineOp.getOperand();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Getitem__TOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Aten__Getitem__TOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
|
|
auto torchList = op.getOperand(0);
|
|
if (isListPotentiallyMutated(torchList))
|
|
return failure();
|
|
|
|
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!listConstruct)
|
|
return failure();
|
|
|
|
// Get the index, but be careful because it might be statically invalid.
|
|
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
|
|
op.getOperand(1), listConstruct.getNumOperands());
|
|
if (!indexOpt)
|
|
return rewriter.notifyMatchFailure(op, "statically invalid index");
|
|
|
|
rewriter.replaceOp(op, {listConstruct.getOperand(*indexOpt)});
|
|
return success();
|
|
});
|
|
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
|
|
auto sizeOp = op.getList().getDefiningOp<AtenSizeOp>();
|
|
if (!sizeOp)
|
|
return failure();
|
|
// This assumes tht the size doesn't change between the
|
|
// AtenSizeOp and the Aten__Getitem__TOp.
|
|
// `t_` is the only op I can find that changes the shape in-place. It seems
|
|
// like otherwise we can treat the size of a tensor as having value
|
|
// semantics. The other view-like ops don't have in-place variants --
|
|
// they always return a new SSA value that is aliased to the input.
|
|
// Can we have a pass to normalize the `t_` case and then elsewhere in the
|
|
// compiler treat the size as having value semantics?
|
|
// There's a small number of such ops, and they are marked as `inplace_view`
|
|
// in PyTorch's `native_functions.yaml` file.
|
|
rewriter.replaceOpWithNewOp<AtenSizeIntOp>(op, sizeOp.getSelf(), op.getIdx());
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenAddTOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AtenAddTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenAddTOp op, PatternRewriter &rewriter) {
|
|
auto lhsListConstruct = op.getA().getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!lhsListConstruct || isListPotentiallyMutated(lhsListConstruct))
|
|
return failure();
|
|
|
|
auto rhsListConstruct = op.getB().getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!rhsListConstruct || isListPotentiallyMutated(rhsListConstruct))
|
|
return failure();
|
|
|
|
SmallVector<Value> concatenatedList;
|
|
for (auto a : lhsListConstruct.getOperands()) {
|
|
concatenatedList.push_back(a);
|
|
}
|
|
for (auto b : rhsListConstruct.getOperands()) {
|
|
concatenatedList.push_back(b);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(op, op.getType(),
|
|
concatenatedList);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSliceTOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void AtenSliceTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](AtenSliceTOp op, PatternRewriter &rewriter) {
|
|
auto valueList = op.getL();
|
|
auto listConstructOp = valueList.getDefiningOp<PrimListConstructOp>();
|
|
if (!listConstructOp || isListPotentiallyMutated(listConstructOp)) {
|
|
return failure();
|
|
}
|
|
|
|
SmallVector<Value> listElements =
|
|
llvm::to_vector<4>(listConstructOp.getElements());
|
|
int64_t size = static_cast<int64_t>(listElements.size());
|
|
|
|
int64_t start;
|
|
int64_t end;
|
|
int64_t step;
|
|
if (op.getStart().getType().isa<Torch::NoneType>()) {
|
|
start = 0;
|
|
} else if (!matchPattern(op.getStart(), m_TorchConstantInt(&start))) {
|
|
return failure();
|
|
}
|
|
if (op.getEnd().getType().isa<Torch::NoneType>()) {
|
|
end = listElements.size();
|
|
} else if (!matchPattern(op.getEnd(), m_TorchConstantInt(&end))) {
|
|
return failure();
|
|
}
|
|
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) {
|
|
return failure();
|
|
}
|
|
|
|
start = start >= 0 ? start : start + size;
|
|
start = start >= 0 ? start : 0;
|
|
end = end >= 0 ? end : end + size;
|
|
end = end < size ? end : size;
|
|
SmallVector<Value> newListElements;
|
|
|
|
for (int64_t i = start; i < end; i += step) {
|
|
newListElements.push_back(listElements[i]);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<PrimListConstructOp>(
|
|
op, Torch::ListType::get(listElements[0].getType()), newListElements);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenEqIntListOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenEqIntListOp::fold(FoldAdaptor adaptor) {
|
|
auto lhsLiteral = getA().getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!lhsLiteral)
|
|
return nullptr;
|
|
auto rhsLiteral = getB().getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!rhsLiteral)
|
|
return nullptr;
|
|
|
|
// If the sizes don't match, then we know the lists aren't equal.
|
|
if (lhsLiteral.getNumOperands() != rhsLiteral.getNumOperands())
|
|
return getI1IntegerAttr(getContext(), false);
|
|
|
|
// If the sizes match and all corresponding list elements are the same Value,
|
|
// then we know the lists are equal.
|
|
// Note that we can't prove that the lists are not-equal with this method,
|
|
// since two different Value's might dynamically be equal.
|
|
if (llvm::all_of(
|
|
llvm::zip(lhsLiteral.getOperands(), rhsLiteral.getOperands()),
|
|
[](const auto &pair) {
|
|
return std::get<0>(pair) == std::get<1>(pair);
|
|
}))
|
|
return getI1IntegerAttr(getContext(), true);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimTupleConstructOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult PrimTupleConstructOp::verify() {
|
|
if (!(isValidSubtype(
|
|
Torch::TupleType::get(getContext(),
|
|
llvm::to_vector<6>(getElements().getType())),
|
|
getResult().getType())))
|
|
return emitOpError(
|
|
"failed to verify that contained types correspond to operand types");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimTupleIndexOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PrimTupleIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](PrimTupleIndexOp op, PatternRewriter &rewriter) {
|
|
auto tupleConstruct = op.getTup().getDefiningOp<Torch::PrimTupleConstructOp>();
|
|
if (!tupleConstruct)
|
|
return failure();
|
|
|
|
int64_t i;
|
|
if (!matchPattern(op.getI(), m_TorchConstantInt(&i)))
|
|
return failure();
|
|
|
|
if (i >= (int64_t)tupleConstruct.getElements().size())
|
|
return failure();
|
|
|
|
// TODO: We should have a clear picture of whether we want to consistently
|
|
// allow refinement, and where. It seems desirable to require precise
|
|
// type equality for TupleConstruct / TupleIndex, but that might break
|
|
// things.
|
|
Value replacement = tupleConstruct.getElements()[i];
|
|
if (replacement.getType() != op.getType()) {
|
|
if (op.getType().isa<BaseTensorType>()) {
|
|
replacement = rewriter.create<Torch::TensorStaticInfoCastOp>(
|
|
op.getLoc(), op.getType(), replacement);
|
|
} else {
|
|
return failure();
|
|
}
|
|
}
|
|
rewriter.replaceOp(op, replacement);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimUninitializedOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PrimUninitializedOp::getCanonicalizationPatterns(
|
|
RewritePatternSet &patterns, MLIRContext *context) {
|
|
patterns.add(+[](PrimUninitializedOp op, PatternRewriter &rewriter) {
|
|
if (!op.use_empty())
|
|
return failure();
|
|
rewriter.eraseOp(op);
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimTupleUnpackOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PrimTupleUnpackOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](PrimTupleUnpackOp op, PatternRewriter &rewriter) {
|
|
auto tupleConstruct = op.getTup().getDefiningOp<Torch::PrimTupleConstructOp>();
|
|
if (!tupleConstruct)
|
|
return failure();
|
|
|
|
rewriter.replaceOp(op, tupleConstruct.getElements());
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimListUnpackOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PrimListUnpackOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](PrimListUnpackOp op, PatternRewriter &rewriter) {
|
|
auto torchList = op.getOperand();
|
|
if (isListPotentiallyMutated(torchList)) {
|
|
return failure();
|
|
}
|
|
|
|
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
|
|
if (!listConstruct)
|
|
return failure();
|
|
|
|
rewriter.replaceOp(op, listConstruct.getElements());
|
|
return success();
|
|
});
|
|
}
|
|
|
|
static PrimDictConstructOp getDictConstructIfNotModified(Value torchDict) {
|
|
if (!llvm::all_of(torchDict.getUsers(), [](Operation *op) {
|
|
return isa<Aten__Getitem__DictStrOp, Aten__Contains__StrOp,
|
|
AtenKeysStrOp, AtenGetDefaultStrOp, PrimDictConstructOp>(op);
|
|
}))
|
|
return nullptr;
|
|
|
|
return torchDict.getDefiningOp<Torch::PrimDictConstructOp>();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Getitem__DictStrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__Getitem__DictStrOp::fold(FoldAdaptor adaptor) {
|
|
auto dictConstruct = getDictConstructIfNotModified(getSelf());
|
|
if (!dictConstruct)
|
|
return nullptr;
|
|
|
|
auto targetKey = getKey();
|
|
for (auto i : llvm::zip(dictConstruct.getKeys(), dictConstruct.getValues())) {
|
|
auto k = std::get<0>(i);
|
|
if (k == targetKey)
|
|
return std::get<1>(i);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Contains__StrOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult Aten__Contains__StrOp::fold(FoldAdaptor adaptor) {
|
|
auto dictConstruct = getDictConstructIfNotModified(getDict());
|
|
if (!dictConstruct)
|
|
return nullptr;
|
|
|
|
auto targetKey = getKey();
|
|
for (auto key : dictConstruct.getKeys()) {
|
|
if (key == targetKey)
|
|
return getI1IntegerAttr(getContext(), true);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Aten__Contains__IntListOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool isListConstructNotModified(Value torchList) {
|
|
return llvm::all_of(torchList.getUsers(), [](Operation *op) {
|
|
return isa<Aten__Contains__IntListOp>(op);
|
|
});
|
|
}
|
|
|
|
OpFoldResult Aten__Contains__IntListOp::fold(FoldAdaptor adaptor) {
|
|
auto itemConstruct = getItem();
|
|
if (!isListConstructNotModified(getL()))
|
|
return nullptr;
|
|
|
|
int64_t item;
|
|
SmallVector<int64_t> list;
|
|
|
|
if (!matchPattern(itemConstruct, m_TorchConstantInt(&item)))
|
|
return nullptr;
|
|
|
|
if (!matchPattern(getL(), m_TorchListOfConstantInts(list)))
|
|
return nullptr;
|
|
|
|
for (auto elem : list) {
|
|
if (elem == item)
|
|
return getI1IntegerAttr(getContext(), true);
|
|
}
|
|
return getI1IntegerAttr(getContext(), false);
|
|
}
|
|
|
|
using BinaryIntOperatorFn = std::function<int64_t(int64_t, int64_t)>;
|
|
static OpFoldResult
|
|
atenBinaryIntOperatorFoldHelper(ArrayRef<Attribute> operands,
|
|
BinaryIntOperatorFn f) {
|
|
auto intLhs = operands[0].dyn_cast_or_null<IntegerAttr>();
|
|
auto intRhs = operands[1].dyn_cast_or_null<IntegerAttr>();
|
|
if (!intLhs || !intRhs) {
|
|
return nullptr;
|
|
}
|
|
return IntegerAttr::get(
|
|
intLhs.getType(),
|
|
f(intLhs.getValue().getSExtValue(), intRhs.getValue().getSExtValue()));
|
|
}
|
|
|
|
using BinaryFloatOperatorFn = std::function<double(double, double)>;
|
|
static OpFoldResult
|
|
atenBinaryFloatOperatorFoldHelper(ArrayRef<Attribute> operands,
|
|
BinaryFloatOperatorFn f) {
|
|
double lhs, rhs;
|
|
auto parseDoubleAttribute = [](Attribute attr, double &value) -> bool {
|
|
if (auto intLhs = attr.dyn_cast_or_null<IntegerAttr>()) {
|
|
value = static_cast<double>(intLhs.getValue().getSExtValue());
|
|
} else if (auto floatLhs = attr.dyn_cast_or_null<FloatAttr>()) {
|
|
value = floatLhs.getValue().convertToDouble();
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
if (!parseDoubleAttribute(operands[0], lhs) ||
|
|
!parseDoubleAttribute(operands[1], rhs)) {
|
|
return nullptr;
|
|
}
|
|
return getF64FloatAttr(operands[0].getContext(), f(lhs, rhs));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenFloordivIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenFloordivIntOp::fold(FoldAdaptor adaptor) {
|
|
return atenBinaryIntOperatorFoldHelper(
|
|
adaptor.getOperands(),
|
|
[](int64_t a, int64_t b) { return std::floor(a / (double)b); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenRemainderIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenRemainderIntOp::fold(FoldAdaptor adaptor) {
|
|
return atenBinaryIntOperatorFoldHelper(
|
|
adaptor.getOperands(), [](int64_t a, int64_t b) { return a % b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenAddIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenAddIntOp::fold(FoldAdaptor adaptor) {
|
|
return atenBinaryIntOperatorFoldHelper(
|
|
adaptor.getOperands(), [](int64_t a, int64_t b) { return a + b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSubIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSubIntOp::fold(FoldAdaptor adaptor) {
|
|
return atenBinaryIntOperatorFoldHelper(
|
|
adaptor.getOperands(), [](int64_t a, int64_t b) { return a - b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenCatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenCatOp::fold(FoldAdaptor adaptor) {
|
|
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
|
|
if (!list || !list->hasOneUse() || list.getElements().size() != 1)
|
|
return nullptr;
|
|
return list.getElements()[0];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenStackOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenStackOp::fold(FoldAdaptor adaptor) {
|
|
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
|
|
if (!list || !list->hasOneUse() || list.getElements().size() != 1)
|
|
return nullptr;
|
|
return list.getElements()[0];
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSliceTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSliceTensorOp::fold(FoldAdaptor adaptor) {
|
|
auto inType = getOperand(0).getType().dyn_cast<ValueTensorType>();
|
|
auto outType = getResult().getType().dyn_cast<ValueTensorType>();
|
|
if (!inType || !outType || !inType.hasSizes() || !outType.hasSizes())
|
|
return nullptr;
|
|
if (inType.getSizes().size() != outType.getSizes().size() ||
|
|
!inType.areAllSizesKnown() || !outType.areAllSizesKnown())
|
|
return nullptr;
|
|
for (size_t i = 0; i < inType.getSizes().size(); ++i) {
|
|
if (inType.getSizes()[i] != outType.getSizes()[i])
|
|
return nullptr;
|
|
}
|
|
return getOperand(0);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenMulIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenMulIntOp::fold(FoldAdaptor adaptor) {
|
|
int64_t lhs, rhs;
|
|
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
|
|
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
|
|
if ((lConstant && lhs == 0) || (rConstant && rhs == 0))
|
|
return getI64IntegerAttr(getContext(), 0);
|
|
if (lConstant && rConstant)
|
|
return getI64IntegerAttr(getContext(), lhs * rhs);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSubFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSubFloatOp::fold(FoldAdaptor adaptor) {
|
|
return atenBinaryFloatOperatorFoldHelper(
|
|
adaptor.getOperands(), [](double a, double b) { return a - b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSubOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSubOp::fold(FoldAdaptor adaptor) {
|
|
if (!adaptor.getA() || !adaptor.getB()) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (adaptor.getA().isa<IntegerAttr>() && adaptor.getB().isa<IntegerAttr>()) {
|
|
return atenBinaryIntOperatorFoldHelper(
|
|
adaptor.getOperands(),
|
|
[](int64_t a, int64_t b) -> int64_t { return a - b; });
|
|
}
|
|
return atenBinaryFloatOperatorFoldHelper(
|
|
adaptor.getOperands(),
|
|
[](double a, double b) -> double { return a - b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenDivOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenDivOp::fold(FoldAdaptor adaptor) {
|
|
if (!adaptor.getA() || !adaptor.getB()) {
|
|
return nullptr;
|
|
}
|
|
// Since AtenDivOp always returns float value, we don't need to deal with the
|
|
// case where the operands are both integers separately.
|
|
return atenBinaryFloatOperatorFoldHelper(
|
|
adaptor.getOperands(),
|
|
[](double a, double b) -> double { return a / b; });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenPowIntFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenPowIntFloatOp::fold(FoldAdaptor adaptor) {
|
|
if (!adaptor.getA() || !adaptor.getB()) {
|
|
return nullptr;
|
|
}
|
|
return atenBinaryFloatOperatorFoldHelper(
|
|
adaptor.getOperands(), [](double a, double b) { return std::pow(a, b); });
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenCeilScalarOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenCeilScalarOp::fold(FoldAdaptor adaptor) {
|
|
if (!adaptor.getA()) {
|
|
return nullptr;
|
|
}
|
|
auto floatValue = adaptor.getA().dyn_cast_or_null<FloatAttr>();
|
|
if (!floatValue) {
|
|
return nullptr;
|
|
}
|
|
return getI64IntegerAttr(
|
|
getContext(),
|
|
static_cast<int64_t>(std::ceil(floatValue.getValue().convertToDouble())));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenNegIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenNegIntOp::fold(FoldAdaptor adaptor) {
|
|
int64_t c;
|
|
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
|
|
return getI64IntegerAttr(getContext(), -c);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenSqrtIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenSqrtIntOp::fold(FoldAdaptor adaptor) {
|
|
int64_t c;
|
|
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
|
|
return getF64FloatAttr(getContext(), std::sqrt(c));
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimDtypeOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult PrimDtypeOp::fold(FoldAdaptor adaptor) {
|
|
BaseTensorType tensorType = getA().getType().cast<BaseTensorType>();
|
|
if (tensorType.hasDtype()) {
|
|
torch_upstream::ScalarType scalarType =
|
|
Torch::getScalarTypeForType(tensorType.getDtype());
|
|
return getI64IntegerAttr(getContext(), static_cast<int64_t>(scalarType));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimDeviceOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void PrimDeviceOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
|
|
MLIRContext *context) {
|
|
patterns.add(+[](PrimDeviceOp op, PatternRewriter &rewriter) {
|
|
// Device information isn't relevant to torch-mlir, just replace it with
|
|
// "cpu".
|
|
rewriter.replaceOpWithNewOp<Torch::ConstantDeviceOp>(op, "cpu");
|
|
return success();
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenIntTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenIntTensorOp::fold(FoldAdaptor adaptor) {
|
|
// If a scalar number is converted to a 0-d tensor and passed on to
|
|
// aten.Int.Tensor, fold to the scalar number.
|
|
if (auto numToTensorScalar = getA().getDefiningOp<PrimNumToTensorScalarOp>())
|
|
return numToTensorScalar.getA();
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenFloatTensorOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenFloatTensorOp::fold(FoldAdaptor adaptor) {
|
|
// If a scalar number is converted to a 0-d tensor and passed on to
|
|
// aten.Float.Tensor, fold to the scalar number.
|
|
if (auto numToTensorScalar = getA().getDefiningOp<PrimNumToTensorScalarOp>())
|
|
return numToTensorScalar.getA();
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenDivFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenDivFloatOp::fold(FoldAdaptor adaptor) {
|
|
double lhs, rhs;
|
|
bool lConstant = matchPattern(getOperand(0), m_TorchConstantFloat(&lhs));
|
|
bool rConstant = matchPattern(getOperand(1), m_TorchConstantFloat(&rhs));
|
|
if (lConstant && lhs == 0.0)
|
|
return getF64FloatAttr(getContext(), 0.0);
|
|
if (lConstant && rConstant && rhs == 1.0)
|
|
return getF64FloatAttr(getContext(), lhs);
|
|
if (lConstant && rConstant)
|
|
return getF64FloatAttr(getContext(), lhs / rhs);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenDivIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenDivIntOp::fold(FoldAdaptor adaptor) {
|
|
int64_t lhs, rhs;
|
|
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
|
|
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
|
|
if (lConstant && rConstant)
|
|
return getF64FloatAttr(getContext(), double(lhs) / rhs);
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AtenCeilFloatOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult AtenCeilFloatOp::fold(FoldAdaptor adaptor) {
|
|
double c;
|
|
if (matchPattern(getOperand(), m_TorchConstantFloat(&c)))
|
|
return getI64IntegerAttr(getContext(), std::ceil(c));
|
|
return nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimMaxIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult PrimMaxIntOp::fold(FoldAdaptor adaptor) {
|
|
// If both operands are the same, then the operation is an identity.
|
|
if (getA() == getB())
|
|
return getA();
|
|
|
|
auto lhs = adaptor.getA().dyn_cast_or_null<IntegerAttr>();
|
|
auto rhs = adaptor.getB().dyn_cast_or_null<IntegerAttr>();
|
|
if (!lhs || !rhs)
|
|
return nullptr;
|
|
// Torch semantics are that !torch.int is 64-bit signed.
|
|
return IntegerAttr::get(
|
|
lhs.getType(),
|
|
std::max(lhs.getValue().getSExtValue(), rhs.getValue().getSExtValue()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimMinSelfIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult PrimMinSelfIntOp::fold(FoldAdaptor adaptor) {
|
|
auto list = getOperand().getDefiningOp<PrimListConstructOp>();
|
|
if (!list)
|
|
return nullptr;
|
|
// TODO: What does it return for an empty list?
|
|
if (list->getNumOperands() == 0)
|
|
return nullptr;
|
|
|
|
SmallVector<int64_t> values;
|
|
for (auto operand : list->getOperands()) {
|
|
int64_t value;
|
|
if (!matchPattern(operand, m_TorchConstantInt(&value)))
|
|
return nullptr;
|
|
values.push_back(value);
|
|
}
|
|
return getI64IntegerAttr(getContext(),
|
|
*std::min_element(values.begin(), values.end()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PrimMinIntOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
OpFoldResult PrimMinIntOp::fold(FoldAdaptor adaptor) {
|
|
// If both operands are the same, then the operation is an identity.
|
|
if (getA() == getB())
|
|
return getA();
|
|
|
|
auto lhs = adaptor.getA().dyn_cast_or_null<IntegerAttr>();
|
|
auto rhs = adaptor.getB().dyn_cast_or_null<IntegerAttr>();
|
|
if (!lhs || !rhs)
|
|
return nullptr;
|
|
// Torch semantics are that !torch.int is 64-bit signed.
|
|
return IntegerAttr::get(
|
|
lhs.getType(),
|
|
std::min(lhs.getValue().getSExtValue(), rhs.getValue().getSExtValue()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShapeCalculateOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename CalculateOp>
|
|
static void
|
|
getSuccessorRegionsForCalculateOp(CalculateOp op, std::optional<unsigned> index,
|
|
ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<RegionSuccessor> ®ions) {
|
|
if (!index.has_value()) {
|
|
// First thing the op does is branch into the calculation.
|
|
regions.emplace_back(&op.getCalculation());
|
|
return;
|
|
}
|
|
if (*index == 0) {
|
|
// Body returns control to the outer op, passing through results.
|
|
regions.emplace_back(op.getResults());
|
|
return;
|
|
}
|
|
assert(*index == 1);
|
|
// Calculation branches to the body.
|
|
regions.emplace_back(&op.getBody());
|
|
}
|
|
|
|
void ShapeCalculateOp::getSuccessorRegions(
|
|
std::optional<unsigned> index, ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<RegionSuccessor> ®ions) {
|
|
getSuccessorRegionsForCalculateOp(*this, index, operands, regions);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DtypeCalculateOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void DtypeCalculateOp::getSuccessorRegions(
|
|
std::optional<unsigned> index, ArrayRef<Attribute> operands,
|
|
SmallVectorImpl<RegionSuccessor> ®ions) {
|
|
getSuccessorRegionsForCalculateOp(*this, index, operands, regions);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ShapeCalculateYieldShapesOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MutableOperandRange ShapeCalculateYieldShapesOp::getMutableSuccessorOperands(
|
|
std::optional<unsigned> index) {
|
|
// The shape operands don't get forwarded to the body.
|
|
// MutableOperandRange always has an owning operation, even if empty, so
|
|
// create a 0-length range.
|
|
return MutableOperandRange(*this, /*start=*/0, /*length=*/0);
|
|
}
|
|
|
|
LogicalResult ShapeCalculateYieldShapesOp::verify() {
|
|
auto parent = cast<ShapeCalculateOp>(getOperation()->getParentOp());
|
|
if (parent.getNumResults() != getNumOperands())
|
|
return emitOpError("expected number of shapes to match number of results");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DtypeCalculateYieldDtypesOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MutableOperandRange DtypeCalculateYieldDtypesOp::getMutableSuccessorOperands(
|
|
std::optional<unsigned> index) {
|
|
// The dtype operands don't get forwarded to the body.
|
|
// MutableOperandRange always has an owning operation, even if empty, so
|
|
// create a 0-length range.
|
|
return MutableOperandRange(*this, /*start=*/0, /*length=*/0);
|
|
}
|
|
|
|
LogicalResult DtypeCalculateYieldDtypesOp::verify() {
|
|
auto parent = cast<DtypeCalculateOp>(getOperation()->getParentOp());
|
|
if (parent.getNumResults() != getNumOperands())
|
|
return emitOpError("expected number of dtypes to match number of results");
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GlobalSlotModuleInitializerOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult GlobalSlotModuleInitializerOp::verify() {
|
|
// We centralize all verification of the global slots and the
|
|
// InitializeGlobalSlotsOp into here, since it requires processing the whole
|
|
// module.
|
|
|
|
// TODO: We should really have a `torch.module` and have this initializer be
|
|
// a region attached to it.
|
|
|
|
ModuleOp module = cast<ModuleOp>(getOperation()->getParentOp());
|
|
for (auto op : module.getOps<GlobalSlotModuleInitializerOp>()) {
|
|
if (op.getOperation() != getOperation())
|
|
return op.emitError("there must be only one global slot initializer");
|
|
}
|
|
|
|
// Collect the relevant symbol names we will verify.
|
|
DenseSet</*StringAttr*/ Attribute> knownGlobalSlots;
|
|
for (auto op : module.getOps<GlobalSlotOp>())
|
|
knownGlobalSlots.insert(op.getSymNameAttr());
|
|
DenseSet</*StringAttr*/ Attribute> initializedGlobalSlots;
|
|
auto initialize = cast<InitializeGlobalSlotsOp>(getBody()->getTerminator());
|
|
for (Attribute symName : initialize.getSlotSymNames()) {
|
|
auto wasInserted = initializedGlobalSlots
|
|
.insert(symName.cast<FlatSymbolRefAttr>().getAttr())
|
|
.second;
|
|
if (!wasInserted)
|
|
return initialize.emitError("duplicate initialization of global slot: ")
|
|
<< symName;
|
|
}
|
|
auto lessThanByStringValue = [](Attribute lhs, Attribute rhs) {
|
|
return lhs.cast<StringAttr>().getValue() <
|
|
rhs.cast<StringAttr>().getValue();
|
|
};
|
|
auto known = llvm::to_vector(knownGlobalSlots);
|
|
llvm::sort(known, lessThanByStringValue);
|
|
auto initialized = llvm::to_vector(initializedGlobalSlots);
|
|
llvm::sort(initialized, lessThanByStringValue);
|
|
|
|
// Check that the global slots in the module are all initialized.
|
|
SymbolTable symbolTable(module);
|
|
if (initializedGlobalSlots != knownGlobalSlots) {
|
|
InFlightDiagnostic diag = initialize.emitOpError(
|
|
"must have one initializer for each global slot in the module");
|
|
for (auto knownGlobalSlot : known) {
|
|
auto symName = FlatSymbolRefAttr::get(knownGlobalSlot.cast<StringAttr>());
|
|
if (!initializedGlobalSlots.count(knownGlobalSlot)) {
|
|
diag.attachNote(
|
|
symbolTable.lookup<GlobalSlotOp>(symName.getAttr()).getLoc())
|
|
.append("missing global slot initializer for ", symName);
|
|
}
|
|
}
|
|
for (auto initializedGlobalSlot : initialized) {
|
|
if (!knownGlobalSlots.count(initializedGlobalSlot)) {
|
|
diag.attachNote().append(
|
|
"unexpected global slot initializer for non-existent global slot ",
|
|
FlatSymbolRefAttr::get(initializedGlobalSlot.cast<StringAttr>()));
|
|
}
|
|
}
|
|
return diag;
|
|
}
|
|
|
|
// Check that initial values satisfy type bounds.
|
|
for (int i = 0, e = initialize.getNumOperands(); i < e; ++i) {
|
|
auto symName = initialize.getSlotSymNames()[i].cast<FlatSymbolRefAttr>();
|
|
auto initialValue = initialize.getOperand(i);
|
|
auto globalSlotOp = symbolTable.lookup<GlobalSlotOp>(symName.getValue());
|
|
if (!isValidSubtype(initialValue.getType(), globalSlotOp.getTypeBound())) {
|
|
return initialize.emitOpError().append(
|
|
"initial value for global slot ", symName, " has type ",
|
|
initialValue.getType(), " which is not within the bound ",
|
|
globalSlotOp.getTypeBound());
|
|
}
|
|
}
|
|
|
|
auto walkResult = getOperation()->walk([](Operation *op) {
|
|
// We only permit a small set of ops in the module initializer.
|
|
// These ops are essentially those which can be produced by the IValue
|
|
// importer.
|
|
if (op->hasTrait<mlir::torch::Torch::OpTrait::AllowedInModuleInitializer>())
|
|
return WalkResult::advance();
|
|
op->emitOpError() << "is not allowed in a module initializer";
|
|
return WalkResult::interrupt();
|
|
});
|
|
if (walkResult.wasInterrupted())
|
|
return failure();
|
|
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InitializeGlobalSlotsOp
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ParseResult InitializeGlobalSlotsOp::parse(OpAsmParser &parser,
|
|
OperationState &result) {
|
|
if (parser.parseOptionalAttrDict(result.attributes))
|
|
return failure();
|
|
if (parser.parseLSquare())
|
|
return failure();
|
|
SmallVector<Attribute> slotSymNames;
|
|
while (!succeeded(parser.parseOptionalRSquare())) {
|
|
NamedAttrList dummy;
|
|
StringAttr slotSymName;
|
|
if (parser.parseSymbolName(slotSymName, "dummy", dummy))
|
|
return failure();
|
|
slotSymNames.push_back(FlatSymbolRefAttr::get(slotSymName));
|
|
if (parser.parseLParen())
|
|
return failure();
|
|
OpAsmParser::UnresolvedOperand initialValue;
|
|
if (parser.parseOperand(initialValue))
|
|
return failure();
|
|
Type initialValueType;
|
|
if (parser.parseColonType(initialValueType))
|
|
return failure();
|
|
if (parser.parseRParen())
|
|
return failure();
|
|
if (parser.resolveOperand(initialValue, initialValueType, result.operands))
|
|
return failure();
|
|
}
|
|
result.addAttribute("slotSymNames",
|
|
ArrayAttr::get(parser.getContext(), slotSymNames));
|
|
return success();
|
|
}
|
|
|
|
void InitializeGlobalSlotsOp::print(OpAsmPrinter &p) {
|
|
p.printOptionalAttrDict(getOperation()->getAttrs(),
|
|
/*elidedAttrs=*/{"slotSymNames"});
|
|
p << " [";
|
|
p.printNewline();
|
|
for (int i = 0, e = getNumOperands(); i < e; ++i) {
|
|
p << " " << getSlotSymNames()[i] << "(" << getInitialValues()[i] << " : "
|
|
<< getInitialValues()[i].getType() << ")";
|
|
p.printNewline();
|
|
}
|
|
p << "]";
|
|
}
|
|
|
|
LogicalResult InitializeGlobalSlotsOp::verify() {
|
|
if (getInitialValues().size() != getSlotSymNames().size())
|
|
return emitOpError("expected number of operands to match number of slots");
|
|
return success();
|
|
}
|