torch-mlir/frontends/pytorch
Sean Silva c837dbb077 Properly import the entire torch::jit::CompilationUnit
This primarily unlocks proper handling of free functions (that is,
functions that are not methods of any torch.nn.Module).

Recommended review order:
- `ivalue_importer.cpp` + `ivalue_import/functions*.py`
- `GlobalizeObjectGraph.cpp` + test case
- misc other stuff

The `torch::jit::CompilationUnit` is basically a backing store or
"context" holding all the possible functions in the program. The
previous code was not explicitly accessing this data structure, since it
just imported the `torch::jit::Function`'s that it saw attached to
methods.

Subtly, any time a TorchScript module called into a free function, the
free function gets incorporated into the torch::jit::CompilationUnit,
but doesn't show up anywhere when dumping the module, except in the
curious pattern:

```
%5 : Function = prim::Constant[name="adaptive_avg_pool2d"]()
%6 : Tensor = prim::CallFunction(%5, %input.1, %4)
```

That is, calls are indirect calls, and are accessed via `prim::Constant`
materializing a function object. Even stranger, the `name` attribute here
doesn't really even tell the full story -- it doesn't correspond to
anything. It turns out that the c10::FunctionType itself actually holds
a pointer to the `torch::jit::Function` in the compilation unit
directly (so there is actually no indirection in prim::CallMethod,
because any two values of the same FunctionType call the same
function!). E.g. when converting the IR to bytecode, the "name" is
ignored [code link](1d6bd15790/torch/csrc/jit/runtime/interpreter.cpp (L937)).
We do import `prim::CallFunction` as a `std.call_indirect` though
because it's more braindead to do it that way (it gets canonicalized to
a direct call easily).
2021-03-01 12:08:01 -08:00
..
csrc Properly import the entire torch::jit::CompilationUnit 2021-03-01 12:08:01 -08:00
docs Add design sketch for aten fallback. 2020-11-24 18:13:35 -08:00
examples Add cos_e2e.py, test_utils and support for tensor inputs (#134) 2020-11-24 19:02:50 -08:00
python Add ability to annotate TorchScript classes. 2021-02-25 11:28:34 -08:00
test Properly import the entire torch::jit::CompilationUnit 2021-03-01 12:08:01 -08:00
utils Add ability to annotate TorchScript classes. 2021-02-25 11:28:34 -08:00
CMakeLists.txt Delete old PyTorch 1.3 type dispatch oriented code paths. 2020-11-12 22:27:05 -08:00
LICENSE Add pytorch interface to ATen Dialect (#30) 2020-08-21 11:22:47 -07:00
README.md Add pytorch interface to ATen Dialect (#30) 2020-08-21 11:22:47 -07:00

README.md

NPComp - PyTorch frontend integration

This directory contains optional components for interfacing PyTorch to NPComp. Integration is targeted at multiple levels:

  • Via program capture with a ATen pseudo-device.
  • Via IR-level integration with PyTorch (via tracing or scripting interfaces).
  • Interfaces to facilitate checking against reference implementations and verification.

In all situations, the target dialects are maintained in the outer project, along with their lowerings to common intermediate dialects and backends. This directory should be purely about interfacing with the PyTorch/LibTorch components for extracting and executing programs.

The code in this directory is intended to integrate tightly with pytorch, and follows the code style for pytorch. See the overall documentation for frontends for further details about code layout and integration philosophy. In particular, this directory exists to provide a working frontend to an MLIR based pytorch compilation flow and is not intended to be contributed to the LLVM monorepo. If the project is successful, it makes more sense to either break it out as an independent project that depends on LLVM/MLIR/npcomp or contribute it upstream to PyTorch. However, as it will be quite some time before the components are in a state to support such a dependency, it is being carried in-tree in the interim.

Program capture with a ATen pseudo-device.

Integration with a pseudo-device is typified by code like the following:

import npcomp.frontends.pytorch as torch_mlir

dev = torch_mlir.mlir_device()
t0 = torch.randn((4,4), device=dev)
t1 = torch.randn((4,4)).to(dev)
t2 = t0 + t1
t2_mlir = torch_mlir.get_mlir( t2 )
t2_cpu = t2.to('cpu')

In this case t2_cpu contains the result of the computation, and t2_mlir contains the mlir description of the computation. Tensors are allocated directly on the virtual device using the device= argument, or computed on the host and then moved to the virtual device using the to(dev) call. Subsequent calls on those tensors construct a graph of computation, but do not perform compute in most cases. This computation graph is returned in MLIR format by the get_mlir call, or lazily evaluated to return a regular pytorch tensor by the to(cpu) call.

This technique has several advantages and disadvantages. For training use cases, this technique generates a backward path automatically using the same method that pytorch natively uses. The resulting graph also tends to be simpler, since it will not reflect conditionals in the original python code. Lastly, it is natural if MLIR is being used as a frontend target for an actual device of some sort. In this case, the MLIR could go through a device-specific lowering path and the resulting code run on a device. The implementation of this technique is largely modeled after pytorch_xla.