mirror of https://github.com/llvm/torch-mlir
109 lines
3.6 KiB
TableGen
109 lines
3.6 KiB
TableGen
//===-------------------------------------------------------*- tablegen -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef TCP_OPS
|
|
#define TCP_OPS
|
|
|
|
include "npcomp/Dialect/TCP/IR/TCPBase.td"
|
|
include "mlir/Dialect/Shape/IR/ShapeBase.td"
|
|
include "mlir/Interfaces/SideEffectInterfaces.td"
|
|
include "mlir/Interfaces/InferTypeOpInterface.td"
|
|
include "mlir/Interfaces/ControlFlowInterfaces.td"
|
|
include "mlir/IR/SymbolInterfaces.td"
|
|
|
|
class TCP_Op<string mnemonic, list<OpTrait> traits = []>
|
|
: Op<TCP_Dialect, mnemonic, traits> {
|
|
}
|
|
|
|
// TODO: Clarify allowed tensor element types.
|
|
class BinaryArithmeticOp<string mnemonic, list<OpTrait> traits = []> :
|
|
TCP_Op<mnemonic, traits> {
|
|
let arguments = (ins AnyRankedTensor:$lhs, AnyRankedTensor:$rhs);
|
|
let results = (outs AnyRankedTensor:$result);
|
|
let assemblyFormat = "$lhs `,` $rhs attr-dict `:` functional-type(operands, results)";
|
|
}
|
|
|
|
def TCP_AddOp : BinaryArithmeticOp<"add"> {
|
|
let summary = "Addition of two tensors";
|
|
let description = [{
|
|
Addition of two tensors.
|
|
}];
|
|
}
|
|
|
|
def TCP_MaxOp : BinaryArithmeticOp<"max"> {
|
|
let summary = "Maximum of two tensors";
|
|
let description = [{
|
|
Maximum of two tensors.
|
|
}];
|
|
}
|
|
|
|
class UnaryArithmeticOp<string mnemonic, list<OpTrait> traits = []> :
|
|
TCP_Op<mnemonic,
|
|
!listconcat(traits, [AllTypesMatch<["operand", "result"]>])>,
|
|
AllTypesMatch<["operand", "result"]> {
|
|
let arguments = (ins AnyTensor:$operand);
|
|
let results = (outs AnyTensor:$result);
|
|
let assemblyFormat = "$operand attr-dict `:` type($operand)";
|
|
}
|
|
|
|
def TCP_ExpOp : UnaryArithmeticOp<"exp"> {
|
|
let summary = "base-e exponential";
|
|
let description = [{
|
|
See std.exp for more details.
|
|
}];
|
|
}
|
|
|
|
def TCP_TanhOp : UnaryArithmeticOp<"tanh"> {
|
|
let summary = "hyperbolic tangent";
|
|
let description = [{
|
|
See std.tanh for more details.
|
|
}];
|
|
}
|
|
|
|
// TODO: Generalize this op appropriately and add more verification.
|
|
// For example, should we have a single primitive that does multidimensional
|
|
// contractions? + batching as well in the same op? In fact, if we want to
|
|
// get really general, we can include convolution as well; matmul is the 1x1
|
|
// image and 1x1 kernel special case.
|
|
// It still lowers trivially into linalg.generic even with such generalization
|
|
// -- the main question is what transforms we want to do at the TCP level that
|
|
// would be affected by those design choices.
|
|
def TCP_MatmulOp : TCP_Op<"matmul"> {
|
|
let summary = "Performs a matrix multiplication";
|
|
let description = [{
|
|
Performs a matrix multiplication.
|
|
|
|
The tensors have dimensions:
|
|
- lhs: [M, K]
|
|
- rhs: [K, N]
|
|
- result: [M, N]
|
|
|
|
If the `K` dimension mismatches between operands, this op has
|
|
undefined behavior.
|
|
}];
|
|
let arguments = (ins 2DTensorOf<[F32]>:$lhs, 2DTensorOf<[F32]>:$rhs);
|
|
let results = (outs 2DTensorOf<[F32]>:$result);
|
|
|
|
let assemblyFormat = "$lhs `,` $rhs attr-dict `:` functional-type(operands, results)";
|
|
}
|
|
|
|
def TCP_BroadcastToOp : TCP_Op<"broadcast_to"> {
|
|
let summary = "Broadcasts an operand to a given shape.";
|
|
let description = [{
|
|
Broadcasts `operand` to the shape `shape`.
|
|
|
|
It is undefined behavior if such a broadcast is not legal.
|
|
}];
|
|
let arguments = (ins AnyRankedTensor:$operand, Shape_ExtentTensorType:$shape);
|
|
let results = (outs AnyRankedTensor:$result);
|
|
|
|
let assemblyFormat = "$operand `,` $shape attr-dict `:` functional-type(operands, results)";
|
|
}
|
|
|
|
#endif // TCP_OPS
|