mirror of https://github.com/llvm/torch-mlir
366 lines
15 KiB
C++
366 lines
15 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToStd/TorchToStd.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Traits.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Patterns (as this grows, it should be organized into multiple files)
|
|
// -----------------------------------------------------------------------------
|
|
// This is going to eventually be O(#torch operators), which is in the 100s.
|
|
|
|
namespace {
|
|
// Note: Confusingly, ATen's "dim" means "number of dimensions" which is what
|
|
// MLIR calls "rank".
|
|
class ConvertAtenDimOp : public OpConversionPattern<AtenDimOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenDimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto rank = rewriter.create<tensor::RankOp>(op->getLoc(), adaptor.self());
|
|
rewriter.replaceOpWithNewOp<arith::IndexCastOp>(
|
|
op, getTypeConverter()->convertType(op.getType()), rank);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertRuntimeAssertOp : public OpConversionPattern<RuntimeAssertOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(RuntimeAssertOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<cf::AssertOp>(op, adaptor.condition(),
|
|
adaptor.message());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename AtenOp, typename BinOp>
|
|
class ConvertAtenBinaryOp : public OpConversionPattern<AtenOp> {
|
|
public:
|
|
using OpConversionPattern<AtenOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOp op,
|
|
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.template replaceOpWithNewOp<BinOp>(op, adaptor.a(), adaptor.b());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename AtenOp, typename UnaryOp>
|
|
class ConvertAtenUnaryOpToFloatMathOp : public OpConversionPattern<AtenOp> {
|
|
public:
|
|
using OpConversionPattern<AtenOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOp op,
|
|
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = adaptor.a();
|
|
Type resultType =
|
|
this->getTypeConverter()->convertType(op->getResult(0).getType());
|
|
if (!input.getType().isa<mlir::FloatType>())
|
|
input = convertScalarToDtype(rewriter, loc, input, rewriter.getF64Type());
|
|
Value result = rewriter.create<UnaryOp>(loc, input);
|
|
rewriter.replaceOp(op,
|
|
convertScalarToDtype(rewriter, loc, result, resultType));
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Lowers aten integer comparison ops.
|
|
template <typename AtenOp, arith::CmpIPredicate Pred>
|
|
class ConvertAtenIntComparisonOp : public OpConversionPattern<AtenOp> {
|
|
public:
|
|
using OpConversionPattern<AtenOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOp op,
|
|
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<arith::CmpIOp>(op, Pred, adaptor.a(),
|
|
adaptor.b());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Lowers aten float and float_int comparison ops.
|
|
template <typename AtenOp, arith::CmpFPredicate Pred>
|
|
class ConvertAtenFloatComparisonOp : public OpConversionPattern<AtenOp> {
|
|
public:
|
|
using OpConversionPattern<AtenOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenOp op,
|
|
typename OpConversionPattern<AtenOp>::OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Value lhs = adaptor.a(), rhs = adaptor.b();
|
|
rhs = convertScalarToDtype(rewriter, op.getLoc(), rhs, lhs.getType());
|
|
rewriter.replaceOpWithNewOp<arith::CmpFOp>(op, Pred, lhs, rhs);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Tensors with integer types need to be converted to signless integer
|
|
// element type. All tensors with element types other than integer can reuse
|
|
// existing elements attribute.
|
|
namespace {
|
|
class ConvertTorchTensorLiteralOp
|
|
: public OpConversionPattern<ValueTensorLiteralOp> {
|
|
public:
|
|
using OpConversionPattern<ValueTensorLiteralOp>::OpConversionPattern;
|
|
using OpAdaptor = ValueTensorLiteralOp::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(ValueTensorLiteralOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
MLIRContext *context = op->getContext();
|
|
if (auto elements = op.valueAttr().dyn_cast<DenseIntElementsAttr>()) {
|
|
Type elemTy = op.valueAttr().getElementType();
|
|
unsigned bitWidth = elemTy.getIntOrFloatBitWidth();
|
|
Type builtinTensorElemTy = IntegerType::get(context, bitWidth);
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
|
|
op, elements.mapValues(builtinTensorElemTy, [&](const APInt &v) {
|
|
return APInt(bitWidth, v.getSExtValue());
|
|
}));
|
|
return success();
|
|
}
|
|
if (auto elements = op.valueAttr().dyn_cast<OpaqueElementsAttr>()) {
|
|
if (auto type = elements.getType().dyn_cast<RankedTensorType>()) {
|
|
if (auto intType = type.getElementType().dyn_cast<IntegerType>()) {
|
|
Type builtinTensorElemTy =
|
|
IntegerType::get(context, intType.getIntOrFloatBitWidth());
|
|
auto shapedType =
|
|
RankedTensorType::get(type.getShape(), builtinTensorElemTy);
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
|
|
op, OpaqueElementsAttr::get(elements.getDialect(), shapedType,
|
|
elements.getValue()));
|
|
return success();
|
|
}
|
|
}
|
|
}
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.valueAttr());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename OpTy>
|
|
class ConvertTorchConstantOp : public OpConversionPattern<OpTy> {
|
|
public:
|
|
using OpConversionPattern<OpTy>::OpConversionPattern;
|
|
using OpAdaptor = typename OpTy::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(OpTy op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.valueAttr());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenAnyBoolOp : public OpConversionPattern<AtenAnyBoolOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenAnyBoolOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
SmallVector<Value> inputListTorchBool;
|
|
if (!getListConstructElements(op.self(), inputListTorchBool)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Unimplemented input list not constructed from ListConstruct");
|
|
}
|
|
SmallVector<bool> inputListBool;
|
|
for (Value v : inputListTorchBool) {
|
|
bool cst;
|
|
if (!matchPattern(v, m_TorchConstantBool(&cst)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only support constant bool input list elements");
|
|
inputListBool.push_back(cst);
|
|
}
|
|
bool result = llvm::any_of(
|
|
inputListBool, [](bool inputListElem) { return inputListElem; });
|
|
rewriter.replaceOpWithNewOp<arith::ConstantOp>(
|
|
op, rewriter.getBoolAttr(result));
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename OpTy, typename CmpOpTy, typename CmpOpPred, CmpOpPred Pred>
|
|
class ConvertAtenBoolLikeOp : public OpConversionPattern<OpTy> {
|
|
public:
|
|
using OpConversionPattern<OpTy>::OpConversionPattern;
|
|
using OpAdaptor = typename OpTy::Adaptor;
|
|
LogicalResult
|
|
matchAndRewrite(OpTy op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Type inputType = adaptor.a().getType();
|
|
Value cstZero = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getZeroAttr(inputType));
|
|
Value cstTrue =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getBoolAttr(true));
|
|
Value cstFalse =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getBoolAttr(false));
|
|
|
|
Value cmpPred;
|
|
cmpPred = rewriter.create<CmpOpTy>(loc, Pred, adaptor.a(), cstZero);
|
|
rewriter.replaceOpWithNewOp<arith::SelectOp>(op, cmpPred, cstTrue,
|
|
cstFalse);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// The pass
|
|
// -----------------------------------------------------------------------------
|
|
|
|
namespace {
|
|
class ConvertTorchToStd : public ConvertTorchToStdBase<ConvertTorchToStd> {
|
|
public:
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry.insert<func::FuncDialect>();
|
|
registry.insert<arith::ArithmeticDialect>();
|
|
registry.insert<tensor::TensorDialect>();
|
|
registry.insert<cf::ControlFlowDialect>();
|
|
registry.insert<math::MathDialect>();
|
|
TorchConversion::getBackendTypeConversionDependentDialects(registry);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
ConversionTarget target(*context);
|
|
target.addLegalDialect<Torch::TorchDialect, func::FuncDialect,
|
|
arith::ArithmeticDialect, tensor::TensorDialect,
|
|
cf::ControlFlowDialect, math::MathDialect>();
|
|
|
|
TypeConverter typeConverter;
|
|
typeConverter.addConversion([](Type type) { return type; });
|
|
TorchConversion::setupBackendTypeConversion(target, typeConverter);
|
|
|
|
RewritePatternSet patterns(context);
|
|
target.addIllegalOp<AtenDimOp>();
|
|
patterns.add<ConvertAtenDimOp>(typeConverter, context);
|
|
target.addIllegalOp<RuntimeAssertOp>();
|
|
patterns.add<ConvertRuntimeAssertOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenNeIntOp, AtenEqIntOp, AtenGtIntOp>();
|
|
patterns
|
|
.add<ConvertAtenIntComparisonOp<AtenNeIntOp, arith::CmpIPredicate::ne>>(
|
|
typeConverter, context);
|
|
patterns
|
|
.add<ConvertAtenIntComparisonOp<AtenEqIntOp, arith::CmpIPredicate::eq>>(
|
|
typeConverter, context);
|
|
patterns.add<
|
|
ConvertAtenIntComparisonOp<AtenGtIntOp, arith::CmpIPredicate::sgt>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenGeFloatOp, AtenGeFloatIntOp, AtenNeFloatIntOp,
|
|
AtenGtFloatIntOp>();
|
|
patterns.add<
|
|
ConvertAtenFloatComparisonOp<AtenGeFloatOp, arith::CmpFPredicate::UGE>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenFloatComparisonOp<AtenGeFloatIntOp,
|
|
arith::CmpFPredicate::UGE>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenFloatComparisonOp<AtenNeFloatIntOp,
|
|
arith::CmpFPredicate::UNE>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenFloatComparisonOp<AtenGtFloatIntOp,
|
|
arith::CmpFPredicate::UGT>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<ValueTensorLiteralOp>();
|
|
patterns.add<ConvertTorchTensorLiteralOp>(typeConverter, context);
|
|
|
|
target.addIllegalOp<ConstantBoolOp>();
|
|
patterns.add<ConvertTorchConstantOp<ConstantBoolOp>>(typeConverter,
|
|
context);
|
|
target.addIllegalOp<Torch::ConstantFloatOp>();
|
|
patterns.add<ConvertTorchConstantOp<Torch::ConstantFloatOp>>(typeConverter,
|
|
context);
|
|
target.addIllegalOp<Torch::ConstantIntOp>();
|
|
patterns.add<ConvertTorchConstantOp<Torch::ConstantIntOp>>(typeConverter,
|
|
context);
|
|
target.addIllegalOp<AtenAddIntOp, AtenSubIntOp, AtenMulIntOp>();
|
|
patterns.add<ConvertAtenBinaryOp<AtenAddIntOp, arith::AddIOp>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenBinaryOp<AtenSubIntOp, arith::SubIOp>>(
|
|
typeConverter, context);
|
|
patterns.add<ConvertAtenBinaryOp<AtenMulIntOp, arith::MulIOp>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenSubFloatOp>();
|
|
patterns.add<ConvertAtenBinaryOp<AtenSubFloatOp, arith::SubFOp>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenDivFloatOp>();
|
|
patterns.add<ConvertAtenBinaryOp<AtenDivFloatOp, arith::DivFOp>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenCeilFloatOp>();
|
|
patterns
|
|
.add<ConvertAtenUnaryOpToFloatMathOp<AtenCeilFloatOp, math::CeilOp>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenSqrtIntOp>();
|
|
patterns.add<ConvertAtenUnaryOpToFloatMathOp<AtenSqrtIntOp, math::SqrtOp>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenAnyBoolOp>();
|
|
patterns.add<ConvertAtenAnyBoolOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenBoolFloatOp, AtenBoolIntOp>();
|
|
patterns.add<
|
|
ConvertAtenBoolLikeOp<AtenBoolFloatOp, arith::CmpFOp,
|
|
arith::CmpFPredicate, arith::CmpFPredicate::UNE>>(
|
|
typeConverter, context);
|
|
patterns.add<
|
|
ConvertAtenBoolLikeOp<AtenBoolIntOp, arith::CmpIOp,
|
|
arith::CmpIPredicate, arith::CmpIPredicate::ne>>(
|
|
typeConverter, context);
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::torch::createConvertTorchToStdPass() {
|
|
return std::make_unique<ConvertTorchToStd>();
|
|
}
|