mirror of https://github.com/llvm/torch-mlir
109 lines
3.3 KiB
Python
109 lines
3.3 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
import os
|
|
|
|
import torch
|
|
|
|
from mlir.ir import *
|
|
from mlir.passmanager import *
|
|
from npcomp.compiler.utils import logging
|
|
import iree.runtime as ireert
|
|
import iree.compiler as ireec
|
|
|
|
__all__ = [
|
|
"CompilerBackend",
|
|
]
|
|
|
|
PREPARE_FOR_IREE_PASSES = (
|
|
"npcomp-iree-backend-lower-linkage",
|
|
)
|
|
|
|
class IreeModuleInvoker:
|
|
"""Wrapper around a native IREE module for calling functions."""
|
|
|
|
def __init__(self, iree_module):
|
|
super().__init__()
|
|
self._iree_module = iree_module
|
|
|
|
def __getattr__(self, function_name):
|
|
return self.__getitem__(function_name)
|
|
|
|
def __getitem__(self, function_name):
|
|
|
|
def invoke(*args):
|
|
results = self._iree_module[function_name](*args)
|
|
if len(results) == 1:
|
|
# De-tuple.
|
|
return results[0]
|
|
else:
|
|
return tuple(results)
|
|
|
|
invoke.__isnpcomp__ = True
|
|
return invoke
|
|
|
|
|
|
class TorchIreeModuleInvoker(IreeModuleInvoker):
|
|
"""Allows torch.Tensor inputs to be passed to module invocations."""
|
|
|
|
def __getitem__(self, function_name: str):
|
|
numpy_invoke = super().__getitem__(function_name)
|
|
|
|
def invoke(*args):
|
|
args = tuple(
|
|
arg.numpy() if isinstance(arg, torch.Tensor) else arg for arg in args)
|
|
return numpy_invoke(*args)
|
|
|
|
return invoke
|
|
|
|
|
|
class CompilerBackend:
|
|
"""Main entry-point for the backend."""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._debug = logging.debug_enabled()
|
|
|
|
def compile(self, imported_module: Module):
|
|
"""Compiles an imported module, with a flat list of functions.
|
|
The module is expected to be in "TCP + scalar code" form.
|
|
TODO: More clearly define the backend contract. Generally this will
|
|
extend to support globals, lists, and other stuff.
|
|
|
|
Args:
|
|
imported_module: The MLIR module consisting of funcs in the torch
|
|
dialect.
|
|
Returns:
|
|
An opaque, backend specific module object that can be passed to load.
|
|
The object may actually be something more specific to the backend (i.e.
|
|
for IREE, it is a serialized VM flatbuffer) but the contract is that
|
|
it is operated on by methods on this class.
|
|
"""
|
|
with imported_module.context as context:
|
|
if self._debug:
|
|
logging.debug("IR passed to IREE compiler backend:\n{}",
|
|
imported_module)
|
|
pipeline_str = ",".join(PREPARE_FOR_IREE_PASSES)
|
|
if self._debug:
|
|
logging.debug("Running Prepare For IREE pipeline '{}'", pipeline_str)
|
|
pm = PassManager.parse(pipeline_str)
|
|
pm.run(imported_module)
|
|
if self._debug:
|
|
logging.debug(
|
|
"IREE Input IR (this is what IREE's compiler will see):\n{}",
|
|
imported_module)
|
|
|
|
# Backend.
|
|
binary = ireec.compile_str(str(imported_module),
|
|
target_backends=["dylib-llvm-aot"])
|
|
iree_config = ireert.Config(driver_name="dylib")
|
|
|
|
iree_module = ireert.load_module(ireert.VmModule.from_flatbuffer(binary),
|
|
config=iree_config)
|
|
return iree_module
|
|
|
|
def load(self, iree_module) -> TorchIreeModuleInvoker:
|
|
"""Loads a compiled artifact into the runtime."""
|
|
return TorchIreeModuleInvoker(iree_module)
|