torch-mlir/lib/Dialect/Torch/Utils/Utils.cpp

394 lines
16 KiB
C++

//===----------------------------------------------------------------------===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "mlir/IR/BuiltinDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
int64_t Torch::toPositiveDim(int64_t dim, int64_t inputRank) {
return dim >= 0 ? dim : dim + inputRank;
}
bool Torch::isValidDim(int64_t dim, int64_t inputRank) {
return dim >= 0 && dim < inputRank;
}
std::optional<int64_t>
Torch::matchLegalConstantIndexIntoListOfSize(Value v, int64_t length) {
int64_t dim;
if (!matchPattern(v, m_TorchConstantInt(&dim)))
return std::nullopt;
dim = toPositiveDim(dim, length);
if (!isValidDim(dim, length))
return std::nullopt;
return dim;
}
bool Torch::getListConstructElements(Value v, SmallVectorImpl<Value> &elems) {
auto listConstruct = v.getDefiningOp<PrimListConstructOp>();
if (!listConstruct)
return false;
elems = llvm::to_vector<4>(listConstruct.getElements());
return true;
}
torch_upstream::ScalarType Torch::getScalarTypeForType(Type type) {
if (type.isa<Float32Type>())
return torch_upstream::ScalarType::Float;
if (type.isa<Float64Type>())
return torch_upstream::ScalarType::Double;
if (type.isSignedInteger(64))
return torch_upstream::ScalarType::Long;
if (type.isSignedInteger(32))
return torch_upstream::ScalarType::Int;
if (type.isSignlessInteger(1))
return torch_upstream::ScalarType::Bool;
if (type.isBF16())
return torch_upstream::ScalarType::BFloat16;
if (type.isF16())
return torch_upstream::ScalarType::Half;
if (type.isUnsignedInteger(8))
return torch_upstream::ScalarType::Byte;
if (type.isSignedInteger(8))
return torch_upstream::ScalarType::Char;
if (type.isa<ComplexType>()) {
mlir::Type complexElemType = type.cast<ComplexType>().getElementType();
if (complexElemType.isF16())
return torch_upstream::ScalarType::ComplexHalf;
if (complexElemType.isF32())
return torch_upstream::ScalarType::ComplexFloat;
if (complexElemType.isF64())
return torch_upstream::ScalarType::ComplexDouble;
}
llvm::report_fatal_error("unhandled type for getScalarTypeForType");
}
Type Torch::getTypeForTorchType(
MLIRContext *context, Type type,
mlir::IntegerType::SignednessSemantics signedness) {
if (type.isa<Torch::IntType>())
return IntegerType::get(context, 64, signedness);
if (type.isa<Torch::FloatType>())
return Float64Type::get(context);
llvm::report_fatal_error("unhandled type for getTypeForTorchType");
}
FailureOr<Type>
Torch::getTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt,
mlir::IntegerType::SignednessSemantics signedness) {
switch (dtypeInt) {
case torch_upstream::ScalarType::Float:
return Float32Type::get(context);
case torch_upstream::ScalarType::Double:
return Float64Type::get(context);
case torch_upstream::ScalarType::Long:
return IntegerType::get(context, 64, signedness);
case torch_upstream::ScalarType::Int:
return IntegerType::get(context, 32, signedness);
case torch_upstream::ScalarType::Bool:
return IntegerType::get(context, 1);
case torch_upstream::ScalarType::BFloat16:
return mlir::FloatType::getBF16(context);
case torch_upstream::ScalarType::Half:
return mlir::FloatType::getF16(context);
case torch_upstream::ScalarType::Byte:
return mlir::IntegerType::get(context, 8, mlir::IntegerType::Unsigned);
case torch_upstream::ScalarType::Char:
return mlir::IntegerType::get(context, 8, signedness);
case torch_upstream::ScalarType::ComplexHalf:
return mlir::ComplexType::get(Float16Type::get(context));
case torch_upstream::ScalarType::ComplexFloat:
return mlir::ComplexType::get(Float32Type::get(context));
case torch_upstream::ScalarType::ComplexDouble:
return mlir::ComplexType::get(Float64Type::get(context));
case torch_upstream::ScalarType::Undefined:
return failure();
default:
llvm::report_fatal_error("unhandled type for getTypeForScalarType");
}
}
FailureOr<Type>
Torch::getTorchTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt) {
switch (dtypeInt) {
case torch_upstream::ScalarType::Double:
return Torch::FloatType::get(context);
case torch_upstream::ScalarType::Long:
return Torch::IntType::get(context);
case torch_upstream::ScalarType::Undefined:
default:
return failure();
}
}
Type Torch::getDefaultDtypeForTorchScalar(Type type) {
MLIRContext *context = type.getContext();
if (type.isa<Torch::FloatType>()) {
// For now, use float32 which is the initial default dtype returned by
// `torch.get_default_dtype`.
return Float32Type::get(context);
}
if (type.isa<Torch::IntType>())
return IntegerType::get(context, 64, IntegerType::Signed);
if (type.isa<Torch::BoolType>())
return IntegerType::get(context, 1);
llvm_unreachable(
"getDefaultDtypeForTorchScalar called on an unsupported type");
}
Type Torch::getBuiltInTypeForTorchScalar(Type type) {
MLIRContext *context = type.getContext();
if (type.isa<Torch::FloatType>())
return Float64Type::get(context);
if (type.isa<Torch::IntType>())
return IntegerType::get(context, 64, IntegerType::Signed);
if (type.isa<Torch::BoolType>())
return IntegerType::get(context, 1);
llvm_unreachable(
"getBuiltInTypeForTorchScalar called on an unsupported type");
}
Value Torch::getDtypeIntValueForType(PatternRewriter &rewriter, Location loc,
Type dtype) {
int intType = (int)getScalarTypeForType(dtype);
return rewriter.create<ConstantIntOp>(loc,
rewriter.getI64IntegerAttr(intType));
}
// Helper to convert a tensor to a specific scalar type.
Value Torch::convertTensorToDtype(PatternRewriter &rewriter, Location loc,
Value input, Type dtype) {
BaseTensorType origType = input.getType().cast<BaseTensorType>();
Type newType = origType.getWithSizesAndDtype(origType.getSizes(), dtype);
// `convertIntVal` contains the corresponding integer for the dtype which is
// used by the aten.to.dtype op.
Value convertIntVal = getDtypeIntValueForType(rewriter, loc, dtype);
Value falseVal = rewriter.create<ConstantBoolOp>(loc, false);
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value converted = rewriter.create<AtenToDtypeOp>(
loc, newType, input, convertIntVal, falseVal, falseVal, noneVal);
return converted;
}
bool Torch::isBuiltInType(Type type) {
return isa<BuiltinDialect>(type.getDialect());
}
std::optional<unsigned> Torch::getTensorRank(Value tensor) {
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
if (!tensorType.hasSizes())
return std::nullopt;
return tensorType.getSizes().size();
}
bool Torch::isViewLikeOp(Operation *op) {
// AtenContiguousOp might return a view, so this is conservatively
// correct. We could potentially be more precise and identify the cases
// that it does not return a view and treat those as having value
// semantics.
return isa<AtenBroadcastToOp, AtenContiguousOp, AtenDetachOp, AtenExpandAsOp,
AtenExpandOp, AtenFlattenUsingIntsOp, AtenUnflattenIntOp,
AtenPermuteOp, AtenReshapeOp, Aten_ReshapeAliasOp, AtenSelectIntOp,
AtenSliceTensorOp, AtenSqueezeDimOp, AtenSqueezeOp, AtenTOp,
AtenToDtypeOp, AtenTransposeIntOp, AtenUnsqueezeOp, AtenViewOp,
TensorStaticInfoCastOp, AtenToDtypeLayoutOp, AtenNumpyTOp,
AtenNarrowOp, AtenNarrowTensorOp, AtenToDeviceOp, PrimsSqueezeOp,
AtenMovedimIntOp, PrimsViewOfOp, AtenRealOp, AtenImagOp,
AtenViewAsComplexOp, AtenViewAsRealOp>(op);
}
Value Torch::getConstantWithGivenDtypeAndValue(PatternRewriter &rewriter,
Location loc, float value,
Type dtype) {
// Creating constants satisfying backend contract.
if (dtype.isInteger(64) || dtype.isInteger(32) || dtype.isInteger(8) ||
dtype.isInteger(1))
return rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr((int64_t)value));
if (dtype.isF64() || dtype.isF32() || dtype.isF16() || dtype.isBF16())
return rewriter.create<ConstantFloatOp>(loc,
rewriter.getF64FloatAttr(value));
llvm::report_fatal_error(
"unhandled type for getConstantWithGivenDtypeAndValue");
}
// Return the number of elements of a tensor if the shape is static; otherwise,
// return -1.
int64_t Torch::getNumberOfElements(RankedTensorType inputType) {
if (!inputType.hasStaticShape())
return -1;
SmallVector<int64_t> inputShape =
makeShapeTorchCompatible(inputType.getShape());
int64_t numel = 1;
for (int64_t i = 0; i < inputType.getRank(); i++)
numel *= inputShape[i];
return numel;
}
SmallVector<int64_t> Torch::makeShapeLLVMCompatible(ArrayRef<int64_t> shape) {
SmallVector<int64_t> updatedShape(shape);
int64_t kDynamic = ShapedType::kDynamic;
for (unsigned i = 0; i < shape.size(); i++) {
assert(shape[i] >= 0 || shape[i] == kUnknownSize);
if (shape[i] == kUnknownSize)
updatedShape[i] = kDynamic;
}
return updatedShape;
}
SmallVector<int64_t> Torch::makeShapeTorchCompatible(ArrayRef<int64_t> shape) {
SmallVector<int64_t> updatedShape(shape);
int64_t kDynamic = ShapedType::kDynamic;
for (unsigned i = 0; i < shape.size(); i++) {
assert(shape[i] >= 0 || shape[i] == kDynamic);
if (shape[i] == kDynamic)
updatedShape[i] = kUnknownSize;
}
return updatedShape;
}
// Helper function to squeeze the input tensor at given dim.
// Return the squeezed tensor or failure.
FailureOr<Value> Torch::squeezeTensor(PatternRewriter &rewriter, Operation *op,
Location loc, int64_t dim, Value input) {
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasSizes()) {
return rewriter.notifyMatchFailure(loc, "input tensor must have size");
}
SmallVector<int64_t> inputShape{inputType.getSizes()};
unsigned inputRank = inputShape.size();
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank)) {
return rewriter.notifyMatchFailure(
op, "dimension to be squeezed is an invalid dim");
}
inputShape.erase(inputShape.begin() + dim);
Type squeezedType =
inputType.getWithSizesAndDtype(inputShape, inputType.getOptionalDtype());
Value cstDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dim));
// Adding a check to verify if the dimension to be squeezed has size 1 or not.
Value cstOne =
rewriter.create<Torch::ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, input, cstDim);
Value cmp = rewriter.create<Torch::AtenEqIntOp>(loc, dimSize, cstOne);
rewriter.create<Torch::RuntimeAssertOp>(
loc, cmp,
"squeeze operation possible for dim only when input_shape[dim] == 1.");
Value result =
rewriter.create<AtenSqueezeDimOp>(loc, squeezedType, input, cstDim);
return result;
}
// Helper function to unsqueeze the input tensor at given dim.
// Return the unsqueezed tensor or failure.
FailureOr<Value> Torch::unsqueezeTensor(PatternRewriter &rewriter,
Operation *op, Value input, Value dim) {
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
if (!inputType.hasSizes()) {
return rewriter.notifyMatchFailure(op, "input tensor must have size");
}
SmallVector<int64_t> unsqueezedShape;
ArrayRef<int64_t> inputShape = inputType.getSizes();
// `input` has a reduced rank. Hence add 1.
int64_t unsqueezedRank = inputShape.size() + 1;
int64_t dimInt = 0;
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
dimInt = toPositiveDim(dimInt, unsqueezedRank);
if (!isValidDim(dimInt, unsqueezedRank)) {
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
}
unsqueezedShape.append(inputShape.begin(), inputShape.end());
unsqueezedShape.insert(unsqueezedShape.begin() + dimInt, 1);
} else {
unsqueezedShape.resize(unsqueezedRank, kUnknownSize);
}
Type unsqueezedType = inputType.getWithSizesAndDtype(
unsqueezedShape, inputType.getOptionalDtype());
Value unsqueezed = rewriter.create<AtenUnsqueezeOp>(
op->getLoc(), unsqueezedType, input, dim);
return unsqueezed;
}
bool Torch::isAssumingStrictSymbolicShapes(Block *block) {
for (Operation *parentOp = block->getParentOp(); parentOp;
parentOp = parentOp->getParentOp()) {
if (parentOp->hasAttr("torch.assume_strict_symbolic_shapes"))
return true;
}
return false;
}
LogicalResult Torch::checkDefaultStrideHelper(Operation *op,
PatternRewriter &rewriter,
Value opSize, Value opStride,
Location loc) {
SmallVector<int64_t> sizeListInts, strideListInts;
if (matchPattern(opSize, m_TorchListOfConstantInts(sizeListInts)) &&
matchPattern(opStride, m_TorchListOfConstantInts(strideListInts))) {
// We only support the cases with default stride values.
// For ex: aten.new_empty_strided(self, size=[2, 3, 4], stride=[12, 4, 1])
// Here the stride[0] == size[1] * size[2], stride[1] == size[2], and
// stride[2] == 1.
bool isDefaultStride = true;
for (unsigned i = 0; i < strideListInts.size(); i++) {
int64_t defaultStride = 1;
for (unsigned j = i + 1; j < sizeListInts.size(); j++)
defaultStride *= sizeListInts[j];
if (defaultStride != strideListInts[i]) {
isDefaultStride = false;
break;
}
}
if (!isDefaultStride)
return rewriter.notifyMatchFailure(
op, "only default strides supported for empty_strided op");
return success();
} else {
SmallVector<Value> sizeListValues;
if (!getListConstructElements(opSize, sizeListValues))
return rewriter.notifyMatchFailure(op, "couldn't get size list values");
SmallVector<Value> strideListValues;
if (!getListConstructElements(opStride, strideListValues))
return rewriter.notifyMatchFailure(op,
"couldn't get stride list values.");
SmallVector<Value> boolVector;
for (unsigned i = 0; i < strideListValues.size(); i++) {
Value defaultStride = rewriter.createOrFold<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
for (unsigned j = i + 1; j < sizeListValues.size(); j++) {
defaultStride = rewriter.createOrFold<Torch::AtenMulIntOp>(
loc, defaultStride, sizeListValues[j]);
}
boolVector.push_back(rewriter.createOrFold<Torch::AtenEqIntOp>(
loc, defaultStride, strideListValues[i]));
}
Value allBoolOpList = rewriter.createOrFold<PrimListConstructOp>(
loc, Torch::ListType::get(rewriter.getType<Torch::BoolType>()),
boolVector);
Value cmp = rewriter.createOrFold<Torch::AtenAllBoolOp>(loc, allBoolOpList);
rewriter.createOrFold<Torch::RuntimeAssertOp>(
loc, cmp, "not all strides are default");
return success();
}
}