mirror of https://github.com/llvm/torch-mlir
201 lines
6.3 KiB
Python
201 lines
6.3 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
# Also available under a BSD-style license. See LICENSE.
|
|
|
|
import torch
|
|
|
|
from torch_mlir_e2e_test.torchscript.framework import TestUtils
|
|
from torch_mlir_e2e_test.torchscript.registry import register_test_case
|
|
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
|
|
|
|
# ==============================================================================
|
|
|
|
class IndexPutImplOneDimFloatNonAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.float32, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.float32, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
return torch.ops.aten._index_put_impl_(input, (index,), value,
|
|
accumulate=False,
|
|
unsafe=False)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutImplOneDimFloatNonAccumulateModule())
|
|
def IndexPutImplOneDimFloatNonAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(100), torch.randint(100, (250,)),
|
|
tu.rand(250))
|
|
|
|
|
|
class IndexPutImplOneDimIntNonAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
return torch.ops.aten._index_put_impl_(input, (index,), value,
|
|
accumulate=False,
|
|
unsafe=False)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutImplOneDimIntNonAccumulateModule())
|
|
def IndexPutImplOneDimIntNonAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(torch.randint(1000, (200,)), torch.randint(100, (300,)),
|
|
torch.randint(10000, (300,)))
|
|
|
|
|
|
class IndexPutImplOneDimFloatAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.float32, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.float32, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
# Since the input is updated in-place, we pass input.clone() in place
|
|
# of input to avoid wrong results.
|
|
return torch.ops.aten._index_put_impl_(input.clone(), (index,), value,
|
|
accumulate=True,
|
|
unsafe=False)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutImplOneDimFloatAccumulateModule())
|
|
def IndexPutImplOneDimFloatAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(1000), torch.randint(10, (500,)),
|
|
tu.rand(500))
|
|
|
|
|
|
class IndexPutImplOneDimIntAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
# Since the input is updated in-place, we pass input.clone() in place
|
|
# of input to avoid wrong results.
|
|
return torch.ops.aten._index_put_impl_(input.clone(), (index,), value,
|
|
accumulate=True,
|
|
unsafe=False)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutImplOneDimIntAccumulateModule())
|
|
def IndexPutImplOneDimIntAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(torch.randint(100, (10,)), torch.randint(10, (10,)),
|
|
torch.randint(1000, (10,)))
|
|
|
|
# ==============================================================================
|
|
|
|
class IndexPutOneDimFloatNonAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.float32, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.float32, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
return torch.ops.aten.index_put(input, (index,), value, accumulate=False)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutOneDimFloatNonAccumulateModule())
|
|
def IndexPutOneDimFloatNonAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(100), torch.randint(100, (250,)),
|
|
tu.rand(250))
|
|
|
|
|
|
class IndexPutOneDimIntNonAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
return torch.ops.aten.index_put(input, (index,), value, accumulate=False)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutOneDimIntNonAccumulateModule())
|
|
def IndexPutOneDimIntNonAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(torch.randint(1000, (200,)), torch.randint(100, (300,)),
|
|
torch.randint(10000, (300,)))
|
|
|
|
|
|
class IndexPutOneDimFloatAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.float32, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.float32, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
return torch.ops.aten.index_put(input, (index,), value, accumulate=True)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutOneDimFloatAccumulateModule())
|
|
def IndexPutOneDimFloatAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(1000), torch.randint(10, (500,)),
|
|
tu.rand(500))
|
|
|
|
|
|
class IndexPutOneDimIntAccumulateModule(torch.nn.Module):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
([-1], torch.int64, True),
|
|
])
|
|
def forward(self, input, index, value):
|
|
return torch.ops.aten.index_put(input, (index,), value, accumulate=True)
|
|
|
|
|
|
@register_test_case(module_factory=lambda: IndexPutOneDimIntAccumulateModule())
|
|
def IndexPutOneDimIntAccumulateModule_basic(module, tu: TestUtils):
|
|
module.forward(torch.randint(100, (10,)), torch.randint(10, (10,)),
|
|
torch.randint(1000, (10,)))
|