torch-mlir/e2e_testing/torchscript/reduction.py

405 lines
12 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import torch
from torch_mlir_e2e_test.torchscript.framework import TestUtils
from torch_mlir_e2e_test.torchscript.registry import register_test_case
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
# ==============================================================================
class ReduceSumFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.sum(a)
@register_test_case(module_factory=lambda: ReduceSumFloatModule())
def ReduceSumFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
# ==============================================================================
class ReduceSumDtypeFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, a):
return torch.sum(a, dtype=torch.float32)
@register_test_case(module_factory=lambda: ReduceSumDtypeFloatModule())
def ReduceSumDtypeFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5).to(torch.float64))
# ==============================================================================
class ReduceSumDimIntListFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.sum(a, (0, 1))
@register_test_case(module_factory=lambda: ReduceSumDimIntListFloatModule())
def ReduceSumDimIntListFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
# ==============================================================================
class ReduceSumDimIntListDtypeFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, a):
return torch.sum(a, (0, 1), dtype=torch.float32)
@register_test_case(module_factory=lambda: ReduceSumDimIntListDtypeFloatModule())
def ReduceSumDimIntListDtypeFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5).to(torch.float64))
# ==============================================================================
class ReduceSumDimIntListKeepDimFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.sum(a, (1, 2), keepdim=True)
@register_test_case(module_factory=lambda: ReduceSumDimIntListKeepDimFloatModule())
def ReduceSumDimIntListKeepDimFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
# ==============================================================================
class ReduceSumUnsignedIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int64, True),
])
def forward(self, a):
return torch.sum(a)
@register_test_case(module_factory=lambda: ReduceSumUnsignedIntModule())
def ReduceSumUnsignedIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(0, 100, (3, 4, 5)))
# ==============================================================================
class ReduceSumSignedIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int64, True),
])
def forward(self, a):
return torch.sum(a)
@register_test_case(module_factory=lambda: ReduceSumSignedIntModule())
def ReduceSumSignedIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(-100, 100, (3, 4, 5)))
# ==============================================================================
class ReduceSumDtypeIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int32, True),
])
def forward(self, a):
return torch.sum(a, dtype=torch.int64)
@register_test_case(module_factory=lambda: ReduceSumDtypeIntModule())
def ReduceSumDtypeIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(100, (3, 4, 5)).to(torch.int32))
# ==============================================================================
class ReduceSumDimIntListIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int64, True),
])
def forward(self, a):
return torch.sum(a, (0, 1))
@register_test_case(module_factory=lambda: ReduceSumDimIntListIntModule())
def ReduceSumDimIntListIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(100, (3, 4, 5)))
# ==============================================================================
class ReduceSumDimIntListDtypeIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int32, True),
])
def forward(self, a):
return torch.sum(a, (0, 1), dtype=torch.int64)
@register_test_case(module_factory=lambda: ReduceSumDimIntListDtypeIntModule())
def ReduceSumDimIntListDtypeIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(100, (3, 4, 5)).to(torch.int32))
# ==============================================================================
class ReduceSumDimIntListKeepDimIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int64, True),
])
def forward(self, a):
return torch.sum(a, (1, 2), keepdim=True)
@register_test_case(module_factory=lambda: ReduceSumDimIntListKeepDimIntModule())
def ReduceSumDimIntListKeepDimIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(100, (3, 4, 5)))
# ==============================================================================
class ReduceMeanDtypeModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, a):
return torch.mean(a, dtype=torch.float32)
@register_test_case(module_factory=lambda: ReduceMeanDtypeModule())
def ReduceMeanDtypeModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5).to(torch.float64))
# ==============================================================================
class ReduceMaxAlongDim(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, a):
return torch.ops.aten.max(a, 1)[0]
@register_test_case(module_factory=lambda: ReduceMaxAlongDim())
def ReduceMaxAlongDim_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5).to(torch.float64))
# ==============================================================================
class ReduceMaxAlongDimNegative(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, a):
return torch.ops.aten.max(a, 1)[0]
@register_test_case(module_factory=lambda: ReduceMaxAlongDimNegative())
def ReduceMaxAlongDimNegative_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5, low=-10, high=10).to(torch.float64))
# ==============================================================================
class ReduceMaxKeepDim(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float64, True),
])
def forward(self, a):
return torch.ops.aten.max(a, 1, keepdim=True)[1]
@register_test_case(module_factory=lambda: ReduceMaxKeepDim())
def ReduceMaxKeepDim_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5).to(torch.float64))
# ==============================================================================
class ReduceMaxKeepDimReturnBoth(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ops.aten.max(a, 1, keepdim=True)
@register_test_case(module_factory=lambda: ReduceMaxKeepDimReturnBoth())
def ReduceMaxKeepDimReturnBoth_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5, low=-10, high=-5))
# ==============================================================================
class ReduceMaxAllDims(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ops.aten.max(a)
@register_test_case(module_factory=lambda: ReduceMaxAllDims())
def ReduceMaxAllDims_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5, low=-10, high=-5))
# ==============================================================================
class ReduceMaxNegativeDim(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ops.aten.max(a, -1, keepdim=True)
@register_test_case(module_factory=lambda: ReduceMaxNegativeDim())
def ReduceMaxNegativeDim_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
# ==============================================================================
class ReduceMaxFloatModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.float32, True),
])
def forward(self, a):
return torch.ops.aten.max(a)
@register_test_case(module_factory=lambda: ReduceMaxFloatModule())
def ReduceMaxFloatModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
# ==============================================================================
class ReduceMaxSignedIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int64, True),
])
def forward(self, a):
return torch.ops.aten.max(a)
@register_test_case(module_factory=lambda: ReduceMaxSignedIntModule())
def ReduceMaxSignedIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(-100, 100, (3, 4, 5)))
# ==============================================================================
class ReduceMaxUnsignedIntModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1, -1], torch.int64, True),
])
def forward(self, a):
return torch.ops.aten.max(a)
@register_test_case(module_factory=lambda: ReduceMaxUnsignedIntModule())
def ReduceMaxUnsignedIntModule_basic(module, tu: TestUtils):
module.forward(torch.randint(100, (3, 4, 5)))