mirror of https://github.com/llvm/torch-mlir
89 lines
2.7 KiB
Python
89 lines
2.7 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
import torch
|
|
|
|
from torch_mlir.torchscript.e2e_test.framework import TestUtils
|
|
from torch_mlir.torchscript.e2e_test.registry import register_test_case
|
|
from torch_mlir.torchscript.annotations import annotate_args, export
|
|
|
|
# ==============================================================================
|
|
|
|
class MmModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1], torch.float32, True),
|
|
([-1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, lhs, rhs):
|
|
return torch.mm(lhs, rhs)
|
|
|
|
@register_test_case(module_factory=lambda: MmModule())
|
|
def MmModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(4, 4), tu.rand(4, 4))
|
|
|
|
@register_test_case(module_factory=lambda: MmModule())
|
|
def MmModule_chained(module, tu: TestUtils):
|
|
res = module.forward(tu.rand(4, 4), tu.rand(4, 4))
|
|
module.forward(res, res)
|
|
|
|
# ==============================================================================
|
|
|
|
# A subgraph with multiple mm ops.
|
|
class MmDagModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([4, 4], torch.float32, True),
|
|
([4, 4], torch.float32, True),
|
|
])
|
|
def forward(self, lhs, rhs):
|
|
return torch.mm(lhs, torch.mm(lhs, rhs))
|
|
|
|
@register_test_case(module_factory=lambda: MmDagModule())
|
|
def MmDagModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(4, 4), tu.rand(4, 4))
|
|
|
|
# ==============================================================================
|
|
|
|
class MmTanhModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1], torch.float32, True),
|
|
([-1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, lhs, rhs):
|
|
return torch.tanh(self.matmul(lhs, rhs))
|
|
def matmul(self, lhs, rhs):
|
|
return torch.mm(lhs, rhs)
|
|
|
|
@register_test_case(module_factory=lambda: MmTanhModule())
|
|
def MmTanhModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(4, 2), tu.rand(2, 4))
|
|
|
|
class AdaptiveAvgPool2dModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.aap2d = torch.nn.AdaptiveAvgPool2d((1,1))
|
|
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1, -1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, x):
|
|
return self.aap2d(x)
|
|
|
|
@register_test_case(module_factory=lambda: AdaptiveAvgPool2dModule())
|
|
def AdaptiveAvgPool2dModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(10, 3, 8, 9))
|