torch-mlir/frontends/pytorch/test/ivalue_import/functions.py

43 lines
1.5 KiB
Python

# -*- Python -*-
# This file is licensed under a pytorch-style license
# See frontends/pytorch/LICENSE for license information.
import typing
import torch
import torch_mlir
# RUN: %PYTHON %s | npcomp-opt | FileCheck %s
mb = torch_mlir.ModuleBuilder()
# CHECK-LABEL: func private @__torch__.TestModule.forward
# CHECK-SAME: (%[[ARG0:.*]]: !torch.nn.Module<"__torch__.TestModule">, %[[ARG1:.*]]: !torch.tensor) -> !torch.tensor {
# CHECK: %[[VAL_2:.*]] = constant @__torch__.identity : (!torch.tensor) -> !torch.tensor
# CHECK: %[[VAL_3:.*]] = call_indirect %[[VAL_2]](%[[ARG1]]) : (!torch.tensor) -> !torch.tensor
# CHECK: return %[[VAL_3]] : !torch.tensor
# CHECK: }
# CHECK-LABEL: func private @__torch__.identity
# CHECK-SAME: (%[[ARG:.*]]: !torch.tensor) -> !torch.tensor {
# CHECK: return %[[ARG]] : !torch.tensor
# CHECK: }
# CHECK-LABEL: torch.class_type @__torch__.TestModule {
# CHECK: torch.method "forward", @__torch__.TestModule.forward
# CHECK: }
def identity(x):
return x
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return identity(x)
test_module = TestModule()
recursivescriptmodule = torch.jit.script(test_module)
# TODO: Automatically handle unpacking Python class RecursiveScriptModule into the underlying ScriptModule.
mb.import_module(recursivescriptmodule._c)
mb.module.operation.print()