mirror of https://github.com/llvm/torch-mlir
358 lines
15 KiB
C++
358 lines
15 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToSCF/TorchToSCF.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/SCF/SCF.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
|
|
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
namespace {
|
|
class ConvertTorchPrimIfYieldOp : public OpConversionPattern<PrimIfYieldOp> {
|
|
public:
|
|
using OpConversionPattern<PrimIfYieldOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(PrimIfYieldOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<scf::YieldOp>(op, adaptor.getOperands());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertTorchPrimIfOp : public OpConversionPattern<PrimIfOp> {
|
|
public:
|
|
using OpConversionPattern<PrimIfOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(PrimIfOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
SmallVector<Type, 1> newResultTypes;
|
|
if (failed(getTypeConverter()->convertTypes(op.getResultTypes(),
|
|
newResultTypes)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"could not convert PrimIfOp outputs");
|
|
auto scfIf = rewriter.create<scf::IfOp>(op->getLoc(), newResultTypes,
|
|
adaptor.condition(),
|
|
/*withElseRegion=*/true);
|
|
auto inlineIfCase = [&](Region &srcRegion, Region &dstRegion) {
|
|
rewriter.inlineRegionBefore(srcRegion, dstRegion, dstRegion.begin());
|
|
rewriter.eraseBlock(&dstRegion.back());
|
|
};
|
|
inlineIfCase(op.thenRegion(), scfIf.getThenRegion());
|
|
inlineIfCase(op.elseRegion(), scfIf.getElseRegion());
|
|
rewriter.replaceOp(op, scfIf.getResults());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
|
|
// Converts the Torch::PrimLoopOp which is ``While-like`` into scf::WhileOp.
|
|
class ConvertTorchPrimLoopWhileLikeOp : public OpConversionPattern<PrimLoopOp> {
|
|
public:
|
|
using OpConversionPattern<PrimLoopOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(PrimLoopOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
// Return failure on for-like loops.
|
|
if (op.isForLike())
|
|
return failure();
|
|
|
|
TypeConverter *typeConverter = getTypeConverter();
|
|
SmallVector<Type, 1> newResultTypes;
|
|
if (failed(
|
|
typeConverter->convertTypes(op.getResultTypes(), newResultTypes)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "could not convert PrimLoopOp outputs");
|
|
|
|
// Create scf.while operation using the operands of torch::primloop. The
|
|
// first argument of the primloop correspond to `maxTripCount` which
|
|
// can be omitted in the `scf.while` operation.
|
|
Value condition = adaptor.initialCondition();
|
|
ValueRange iterArgsInit = adaptor.iterArgsInit();
|
|
SmallVector<Value> scfWhileOpOperands{condition};
|
|
scfWhileOpOperands.append(iterArgsInit.begin(), iterArgsInit.end());
|
|
auto scfWhileOp = rewriter.create<scf::WhileOp>(
|
|
op->getLoc(), newResultTypes, scfWhileOpOperands);
|
|
|
|
// Populate the before region of the scf.while operation. The `before`
|
|
// region will have only one block and the arguments of the block must match
|
|
// the arguments of `scf.while` operation.
|
|
SmallVector<Type> beforeRegionArgTypes;
|
|
SmallVector<Location> beforeRegionArgLocs;
|
|
for (Value value : scfWhileOp->getOperands()) {
|
|
beforeRegionArgTypes.push_back(value.getType());
|
|
beforeRegionArgLocs.push_back(value.getLoc());
|
|
}
|
|
auto *beforeBlock = rewriter.createBlock(
|
|
&scfWhileOp.getBefore(), scfWhileOp.getBefore().begin(),
|
|
beforeRegionArgTypes, beforeRegionArgLocs);
|
|
|
|
rewriter.setInsertionPointToEnd(beforeBlock);
|
|
// Fetch the condition passed as the iter argument. Pass rest of the
|
|
// arguments to the after block.
|
|
auto scfConditionOp = rewriter.create<scf::ConditionOp>(
|
|
op.getLoc(), beforeBlock->getArgument(0),
|
|
beforeBlock->getArguments().drop_front());
|
|
|
|
// Populate the after region.
|
|
if (!scfWhileOp.getAfter().empty())
|
|
rewriter.eraseBlock(&scfWhileOp.getAfter().back());
|
|
|
|
SmallVector<Type> afterRegionArgTypes;
|
|
SmallVector<Location> afterRegionArgLocs;
|
|
for (Value value : scfConditionOp.getArgs()) {
|
|
afterRegionArgTypes.push_back(value.getType());
|
|
afterRegionArgLocs.push_back(value.getLoc());
|
|
}
|
|
auto *afterBlock = rewriter.createBlock(
|
|
&scfWhileOp.getAfter(), scfWhileOp.getAfter().begin(),
|
|
afterRegionArgTypes, afterRegionArgLocs);
|
|
|
|
// Rewrite uses of the torch loop block arguments to the new while-loop
|
|
// "after" arguments. Leave the induction variable of prim loop(first
|
|
// argument) because while like prim loops does not use the induction
|
|
// variable.
|
|
for (const auto &barg :
|
|
enumerate(op.region().front().getArguments().drop_front())) {
|
|
Value to = afterBlock->getArgument(barg.index());
|
|
Type targetType = to.getType();
|
|
Value torchArg = to;
|
|
|
|
// If the target type is non-torch type, then use TypeConverter to convert
|
|
// the type of the source.
|
|
if (targetType.isa<mlir::FloatType>()) {
|
|
targetType = Torch::FloatType::get(op->getContext());
|
|
torchArg = typeConverter->materializeSourceConversion(
|
|
rewriter, scfWhileOp.getLoc(), targetType, {to});
|
|
} else if (targetType.isa<mlir::IntegerType>()) {
|
|
unsigned bitWidth = targetType.getIntOrFloatBitWidth();
|
|
if (bitWidth == 1)
|
|
targetType = Torch::BoolType::get(op->getContext());
|
|
else
|
|
targetType = Torch::IntType::get(op->getContext());
|
|
torchArg = typeConverter->materializeSourceConversion(
|
|
rewriter, scfWhileOp.getLoc(), targetType, {to});
|
|
}
|
|
if (!torchArg)
|
|
return rewriter.notifyMatchFailure(op,
|
|
"unsupported type of the operand");
|
|
barg.value().replaceAllUsesWith(torchArg);
|
|
}
|
|
// Inline torch loop body operations into 'after' region.
|
|
PatternRewriter::InsertionGuard guard(rewriter);
|
|
for (auto &operation :
|
|
llvm::make_early_inc_range(op.region().front().getOperations())) {
|
|
if (auto primLoopConditionOp = dyn_cast<PrimLoopConditionOp>(operation)) {
|
|
// Fix up the terminator.
|
|
SmallVector<Value> loopConditionIterArgs;
|
|
Value torchShouldContinue = primLoopConditionOp.shouldContinue();
|
|
Value shouldContinue = typeConverter->materializeTargetConversion(
|
|
rewriter, scfWhileOp->getLoc(),
|
|
typeConverter->convertType(torchShouldContinue.getType()),
|
|
{torchShouldContinue});
|
|
if (!shouldContinue)
|
|
return rewriter.notifyMatchFailure(op,
|
|
"unsupported type of the operand");
|
|
loopConditionIterArgs.push_back(shouldContinue);
|
|
for (auto torchArg : primLoopConditionOp.iterArgs()) {
|
|
Type torchType = torchArg.getType();
|
|
|
|
// If the argument is a torch tensor, directly add it in the list of
|
|
// iter args.
|
|
if (torchType.isa<Torch::BaseTensorType>()) {
|
|
loopConditionIterArgs.push_back(torchArg);
|
|
continue;
|
|
}
|
|
Value arg = typeConverter->materializeTargetConversion(
|
|
rewriter, scfWhileOp->getLoc(),
|
|
typeConverter->convertType(torchArg.getType()), {torchArg});
|
|
if (!arg)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unsupported type of the operand");
|
|
loopConditionIterArgs.push_back(arg);
|
|
}
|
|
rewriter.create<scf::YieldOp>(scfWhileOp.getLoc(),
|
|
loopConditionIterArgs);
|
|
|
|
} else {
|
|
operation.moveBefore(afterBlock, afterBlock->end());
|
|
}
|
|
}
|
|
rewriter.replaceOp(op, scfWhileOp->getResults());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Converts the Torch::PrimLoopOp which is ``For-like`` into scf::ForOp.
|
|
class ConvertTorchPrimLoopForLikeOp : public OpConversionPattern<PrimLoopOp> {
|
|
public:
|
|
using OpConversionPattern<PrimLoopOp>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(PrimLoopOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
// Return failure on while-like loops.
|
|
if (!op.isForLike())
|
|
return failure();
|
|
|
|
TypeConverter *typeConverter = getTypeConverter();
|
|
SmallVector<Type, 1> newResultTypes;
|
|
if (failed(
|
|
typeConverter->convertTypes(op.getResultTypes(), newResultTypes)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "could not convert PrimLoopOp outputs");
|
|
|
|
// Calculate the lower bound, upper bound and step indices. Currently only
|
|
// lower-bound = 0 and step = 1 is supported.
|
|
Location loc = op.getLoc();
|
|
Value lowerBoundIndex = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value stepIndex = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
Value upperBoundIndex = rewriter.create<arith::IndexCastOp>(
|
|
loc, rewriter.getIndexType(), adaptor.maxTripCount());
|
|
auto scfForOp =
|
|
rewriter.create<scf::ForOp>(loc, lowerBoundIndex, upperBoundIndex,
|
|
stepIndex, adaptor.iterArgsInit());
|
|
|
|
SmallVector<Type> regionArgTypes;
|
|
SmallVector<Location> regionArgLocs;
|
|
for (Value value : scfForOp.getLoopBody().front().getArguments()) {
|
|
regionArgTypes.push_back(value.getType());
|
|
regionArgLocs.push_back(value.getLoc());
|
|
}
|
|
|
|
// Populate the loop body region.
|
|
if (!scfForOp.getLoopBody().empty())
|
|
rewriter.eraseBlock(&scfForOp.getLoopBody().back());
|
|
|
|
auto *block = rewriter.createBlock(&scfForOp.getLoopBody(),
|
|
scfForOp.getLoopBody().begin(),
|
|
regionArgTypes, regionArgLocs);
|
|
|
|
// Rewrite uses of the torch loop block arguments to the new for-loop
|
|
// "block" arguments
|
|
for (const auto &barg : enumerate(op.region().front().getArguments())) {
|
|
Value to = block->getArgument(barg.index());
|
|
if (to.getType().isa<mlir::IndexType>())
|
|
to =
|
|
rewriter.create<arith::IndexCastOp>(loc, rewriter.getI64Type(), to);
|
|
Type targetType = to.getType();
|
|
Value torchArg = to;
|
|
|
|
// If the target type is non-torch type, then use TypeConverter to convert
|
|
// the type of the source.
|
|
if (targetType.isa<mlir::FloatType>()) {
|
|
targetType = Torch::FloatType::get(op->getContext());
|
|
torchArg = typeConverter->materializeSourceConversion(
|
|
rewriter, scfForOp.getLoc(), targetType, {to});
|
|
} else if (targetType.isa<mlir::IntegerType>()) {
|
|
unsigned bitWidth = targetType.getIntOrFloatBitWidth();
|
|
if (bitWidth == 1)
|
|
targetType = Torch::BoolType::get(op->getContext());
|
|
else
|
|
targetType = Torch::IntType::get(op->getContext());
|
|
torchArg = typeConverter->materializeSourceConversion(
|
|
rewriter, scfForOp.getLoc(), targetType, {to});
|
|
}
|
|
if (!torchArg)
|
|
return rewriter.notifyMatchFailure(op,
|
|
"unsupported type of the operand");
|
|
barg.value().replaceAllUsesWith(torchArg);
|
|
}
|
|
|
|
// Inline torch loop body operations into 'after' region.
|
|
PatternRewriter::InsertionGuard guard(rewriter);
|
|
for (auto &operation :
|
|
llvm::make_early_inc_range(op.region().front().getOperations())) {
|
|
if (auto primLoopConditionOp = dyn_cast<PrimLoopConditionOp>(operation)) {
|
|
// Fix up the terminator.
|
|
SmallVector<Value> loopConditionIterArgs;
|
|
for (auto torchArg : primLoopConditionOp.iterArgs()) {
|
|
Type torchType = torchArg.getType();
|
|
|
|
// If the argument is a torch tensor, directly add it in the list of
|
|
// iter args.
|
|
if (torchType.isa<Torch::BaseTensorType>()) {
|
|
loopConditionIterArgs.push_back(torchArg);
|
|
continue;
|
|
}
|
|
Value arg = typeConverter->materializeTargetConversion(
|
|
rewriter, scfForOp.getLoc(),
|
|
typeConverter->convertType(torchArg.getType()), {torchArg});
|
|
if (!arg)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unsupported type of the operand");
|
|
loopConditionIterArgs.push_back(arg);
|
|
}
|
|
rewriter.create<scf::YieldOp>(scfForOp.getLoc(), loopConditionIterArgs);
|
|
} else {
|
|
operation.moveBefore(block, block->end());
|
|
}
|
|
}
|
|
|
|
rewriter.replaceOp(op, scfForOp->getResults());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertTorchToSCF : public ConvertTorchToSCFBase<ConvertTorchToSCF> {
|
|
public:
|
|
void getDependentDialects(DialectRegistry ®istry) const override {
|
|
registry.insert<scf::SCFDialect, arith::ArithmeticDialect>();
|
|
TorchConversion::getBackendTypeConversionDependentDialects(registry);
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
ConversionTarget target(*context);
|
|
target.addLegalDialect<Torch::TorchDialect, scf::SCFDialect,
|
|
arith::ArithmeticDialect>();
|
|
|
|
TypeConverter typeConverter;
|
|
typeConverter.addConversion([](Type type) { return type; });
|
|
TorchConversion::setupBackendTypeConversion(target, typeConverter);
|
|
|
|
RewritePatternSet patterns(context);
|
|
target.addIllegalOp<PrimIfOp>();
|
|
patterns.add<ConvertTorchPrimIfOp>(typeConverter, context);
|
|
target.addIllegalOp<PrimIfYieldOp>();
|
|
patterns.add<ConvertTorchPrimIfYieldOp>(typeConverter, context);
|
|
target.addIllegalOp<PrimLoopOp>();
|
|
patterns.add<ConvertTorchPrimLoopWhileLikeOp>(typeConverter, context);
|
|
patterns.add<ConvertTorchPrimLoopForLikeOp>(typeConverter, context);
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::torch::createConvertTorchToSCFPass() {
|
|
return std::make_unique<ConvertTorchToSCF>();
|
|
}
|