torch-mlir/lib/Conversion/TorchToSCF/TorchToSCF.cpp

358 lines
15 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToSCF/TorchToSCF.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
class ConvertTorchPrimIfYieldOp : public OpConversionPattern<PrimIfYieldOp> {
public:
using OpConversionPattern<PrimIfYieldOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(PrimIfYieldOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<scf::YieldOp>(op, adaptor.getOperands());
return success();
}
};
} // namespace
namespace {
class ConvertTorchPrimIfOp : public OpConversionPattern<PrimIfOp> {
public:
using OpConversionPattern<PrimIfOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(PrimIfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Type, 1> newResultTypes;
if (failed(getTypeConverter()->convertTypes(op.getResultTypes(),
newResultTypes)))
return rewriter.notifyMatchFailure(op,
"could not convert PrimIfOp outputs");
auto scfIf = rewriter.create<scf::IfOp>(op->getLoc(), newResultTypes,
adaptor.condition(),
/*withElseRegion=*/true);
auto inlineIfCase = [&](Region &srcRegion, Region &dstRegion) {
rewriter.inlineRegionBefore(srcRegion, dstRegion, dstRegion.begin());
rewriter.eraseBlock(&dstRegion.back());
};
inlineIfCase(op.thenRegion(), scfIf.getThenRegion());
inlineIfCase(op.elseRegion(), scfIf.getElseRegion());
rewriter.replaceOp(op, scfIf.getResults());
return success();
}
};
} // namespace
namespace {
// Converts the Torch::PrimLoopOp which is ``While-like`` into scf::WhileOp.
class ConvertTorchPrimLoopWhileLikeOp : public OpConversionPattern<PrimLoopOp> {
public:
using OpConversionPattern<PrimLoopOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(PrimLoopOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Return failure on for-like loops.
if (op.isForLike())
return failure();
TypeConverter *typeConverter = getTypeConverter();
SmallVector<Type, 1> newResultTypes;
if (failed(
typeConverter->convertTypes(op.getResultTypes(), newResultTypes)))
return rewriter.notifyMatchFailure(
op, "could not convert PrimLoopOp outputs");
// Create scf.while operation using the operands of torch::primloop. The
// first argument of the primloop correspond to `maxTripCount` which
// can be omitted in the `scf.while` operation.
Value condition = adaptor.initialCondition();
ValueRange iterArgsInit = adaptor.iterArgsInit();
SmallVector<Value> scfWhileOpOperands{condition};
scfWhileOpOperands.append(iterArgsInit.begin(), iterArgsInit.end());
auto scfWhileOp = rewriter.create<scf::WhileOp>(
op->getLoc(), newResultTypes, scfWhileOpOperands);
// Populate the before region of the scf.while operation. The `before`
// region will have only one block and the arguments of the block must match
// the arguments of `scf.while` operation.
SmallVector<Type> beforeRegionArgTypes;
SmallVector<Location> beforeRegionArgLocs;
for (Value value : scfWhileOp->getOperands()) {
beforeRegionArgTypes.push_back(value.getType());
beforeRegionArgLocs.push_back(value.getLoc());
}
auto *beforeBlock = rewriter.createBlock(
&scfWhileOp.getBefore(), scfWhileOp.getBefore().begin(),
beforeRegionArgTypes, beforeRegionArgLocs);
rewriter.setInsertionPointToEnd(beforeBlock);
// Fetch the condition passed as the iter argument. Pass rest of the
// arguments to the after block.
auto scfConditionOp = rewriter.create<scf::ConditionOp>(
op.getLoc(), beforeBlock->getArgument(0),
beforeBlock->getArguments().drop_front());
// Populate the after region.
if (!scfWhileOp.getAfter().empty())
rewriter.eraseBlock(&scfWhileOp.getAfter().back());
SmallVector<Type> afterRegionArgTypes;
SmallVector<Location> afterRegionArgLocs;
for (Value value : scfConditionOp.getArgs()) {
afterRegionArgTypes.push_back(value.getType());
afterRegionArgLocs.push_back(value.getLoc());
}
auto *afterBlock = rewriter.createBlock(
&scfWhileOp.getAfter(), scfWhileOp.getAfter().begin(),
afterRegionArgTypes, afterRegionArgLocs);
// Rewrite uses of the torch loop block arguments to the new while-loop
// "after" arguments. Leave the induction variable of prim loop(first
// argument) because while like prim loops does not use the induction
// variable.
for (const auto &barg :
enumerate(op.region().front().getArguments().drop_front())) {
Value to = afterBlock->getArgument(barg.index());
Type targetType = to.getType();
Value torchArg = to;
// If the target type is non-torch type, then use TypeConverter to convert
// the type of the source.
if (targetType.isa<mlir::FloatType>()) {
targetType = Torch::FloatType::get(op->getContext());
torchArg = typeConverter->materializeSourceConversion(
rewriter, scfWhileOp.getLoc(), targetType, {to});
} else if (targetType.isa<mlir::IntegerType>()) {
unsigned bitWidth = targetType.getIntOrFloatBitWidth();
if (bitWidth == 1)
targetType = Torch::BoolType::get(op->getContext());
else
targetType = Torch::IntType::get(op->getContext());
torchArg = typeConverter->materializeSourceConversion(
rewriter, scfWhileOp.getLoc(), targetType, {to});
}
if (!torchArg)
return rewriter.notifyMatchFailure(op,
"unsupported type of the operand");
barg.value().replaceAllUsesWith(torchArg);
}
// Inline torch loop body operations into 'after' region.
PatternRewriter::InsertionGuard guard(rewriter);
for (auto &operation :
llvm::make_early_inc_range(op.region().front().getOperations())) {
if (auto primLoopConditionOp = dyn_cast<PrimLoopConditionOp>(operation)) {
// Fix up the terminator.
SmallVector<Value> loopConditionIterArgs;
Value torchShouldContinue = primLoopConditionOp.shouldContinue();
Value shouldContinue = typeConverter->materializeTargetConversion(
rewriter, scfWhileOp->getLoc(),
typeConverter->convertType(torchShouldContinue.getType()),
{torchShouldContinue});
if (!shouldContinue)
return rewriter.notifyMatchFailure(op,
"unsupported type of the operand");
loopConditionIterArgs.push_back(shouldContinue);
for (auto torchArg : primLoopConditionOp.iterArgs()) {
Type torchType = torchArg.getType();
// If the argument is a torch tensor, directly add it in the list of
// iter args.
if (torchType.isa<Torch::BaseTensorType>()) {
loopConditionIterArgs.push_back(torchArg);
continue;
}
Value arg = typeConverter->materializeTargetConversion(
rewriter, scfWhileOp->getLoc(),
typeConverter->convertType(torchArg.getType()), {torchArg});
if (!arg)
return rewriter.notifyMatchFailure(
op, "unsupported type of the operand");
loopConditionIterArgs.push_back(arg);
}
rewriter.create<scf::YieldOp>(scfWhileOp.getLoc(),
loopConditionIterArgs);
} else {
operation.moveBefore(afterBlock, afterBlock->end());
}
}
rewriter.replaceOp(op, scfWhileOp->getResults());
return success();
}
};
} // namespace
namespace {
// Converts the Torch::PrimLoopOp which is ``For-like`` into scf::ForOp.
class ConvertTorchPrimLoopForLikeOp : public OpConversionPattern<PrimLoopOp> {
public:
using OpConversionPattern<PrimLoopOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(PrimLoopOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Return failure on while-like loops.
if (!op.isForLike())
return failure();
TypeConverter *typeConverter = getTypeConverter();
SmallVector<Type, 1> newResultTypes;
if (failed(
typeConverter->convertTypes(op.getResultTypes(), newResultTypes)))
return rewriter.notifyMatchFailure(
op, "could not convert PrimLoopOp outputs");
// Calculate the lower bound, upper bound and step indices. Currently only
// lower-bound = 0 and step = 1 is supported.
Location loc = op.getLoc();
Value lowerBoundIndex = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value stepIndex = rewriter.create<arith::ConstantIndexOp>(loc, 1);
Value upperBoundIndex = rewriter.create<arith::IndexCastOp>(
loc, rewriter.getIndexType(), adaptor.maxTripCount());
auto scfForOp =
rewriter.create<scf::ForOp>(loc, lowerBoundIndex, upperBoundIndex,
stepIndex, adaptor.iterArgsInit());
SmallVector<Type> regionArgTypes;
SmallVector<Location> regionArgLocs;
for (Value value : scfForOp.getLoopBody().front().getArguments()) {
regionArgTypes.push_back(value.getType());
regionArgLocs.push_back(value.getLoc());
}
// Populate the loop body region.
if (!scfForOp.getLoopBody().empty())
rewriter.eraseBlock(&scfForOp.getLoopBody().back());
auto *block = rewriter.createBlock(&scfForOp.getLoopBody(),
scfForOp.getLoopBody().begin(),
regionArgTypes, regionArgLocs);
// Rewrite uses of the torch loop block arguments to the new for-loop
// "block" arguments
for (const auto &barg : enumerate(op.region().front().getArguments())) {
Value to = block->getArgument(barg.index());
if (to.getType().isa<mlir::IndexType>())
to =
rewriter.create<arith::IndexCastOp>(loc, rewriter.getI64Type(), to);
Type targetType = to.getType();
Value torchArg = to;
// If the target type is non-torch type, then use TypeConverter to convert
// the type of the source.
if (targetType.isa<mlir::FloatType>()) {
targetType = Torch::FloatType::get(op->getContext());
torchArg = typeConverter->materializeSourceConversion(
rewriter, scfForOp.getLoc(), targetType, {to});
} else if (targetType.isa<mlir::IntegerType>()) {
unsigned bitWidth = targetType.getIntOrFloatBitWidth();
if (bitWidth == 1)
targetType = Torch::BoolType::get(op->getContext());
else
targetType = Torch::IntType::get(op->getContext());
torchArg = typeConverter->materializeSourceConversion(
rewriter, scfForOp.getLoc(), targetType, {to});
}
if (!torchArg)
return rewriter.notifyMatchFailure(op,
"unsupported type of the operand");
barg.value().replaceAllUsesWith(torchArg);
}
// Inline torch loop body operations into 'after' region.
PatternRewriter::InsertionGuard guard(rewriter);
for (auto &operation :
llvm::make_early_inc_range(op.region().front().getOperations())) {
if (auto primLoopConditionOp = dyn_cast<PrimLoopConditionOp>(operation)) {
// Fix up the terminator.
SmallVector<Value> loopConditionIterArgs;
for (auto torchArg : primLoopConditionOp.iterArgs()) {
Type torchType = torchArg.getType();
// If the argument is a torch tensor, directly add it in the list of
// iter args.
if (torchType.isa<Torch::BaseTensorType>()) {
loopConditionIterArgs.push_back(torchArg);
continue;
}
Value arg = typeConverter->materializeTargetConversion(
rewriter, scfForOp.getLoc(),
typeConverter->convertType(torchArg.getType()), {torchArg});
if (!arg)
return rewriter.notifyMatchFailure(
op, "unsupported type of the operand");
loopConditionIterArgs.push_back(arg);
}
rewriter.create<scf::YieldOp>(scfForOp.getLoc(), loopConditionIterArgs);
} else {
operation.moveBefore(block, block->end());
}
}
rewriter.replaceOp(op, scfForOp->getResults());
return success();
}
};
} // namespace
namespace {
class ConvertTorchToSCF : public ConvertTorchToSCFBase<ConvertTorchToSCF> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<scf::SCFDialect, arith::ArithmeticDialect>();
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
ConversionTarget target(*context);
target.addLegalDialect<Torch::TorchDialect, scf::SCFDialect,
arith::ArithmeticDialect>();
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
TorchConversion::setupBackendTypeConversion(target, typeConverter);
RewritePatternSet patterns(context);
target.addIllegalOp<PrimIfOp>();
patterns.add<ConvertTorchPrimIfOp>(typeConverter, context);
target.addIllegalOp<PrimIfYieldOp>();
patterns.add<ConvertTorchPrimIfYieldOp>(typeConverter, context);
target.addIllegalOp<PrimLoopOp>();
patterns.add<ConvertTorchPrimLoopWhileLikeOp>(typeConverter, context);
patterns.add<ConvertTorchPrimLoopForLikeOp>(typeConverter, context);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::createConvertTorchToSCFPass() {
return std::make_unique<ConvertTorchToSCF>();
}