mirror of https://github.com/llvm/torch-mlir
3213 lines
146 KiB
C++
3213 lines
146 KiB
C++
//===------------------------------------------------------------*- C++ -*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h"
|
|
#include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::onnx_c;
|
|
|
|
// Simple rewrites for the default domain.
|
|
// See: https://onnx.ai/onnx/operators/
|
|
// For operators that are effectively version invariant, we register with
|
|
// sinceVersion==1. We interpret this to include the following spec
|
|
// diffs that are irrelevant to this level of lowering:
|
|
// * Supported element types.
|
|
// * Limited broadcasting to full broadcasting support.
|
|
//
|
|
// There are a lot of spec revisions that basically generalized elementwise
|
|
// to be more normal and a direct translation vs a special case. This
|
|
// results in a lot of ONNX test cases that all reduce to the exact same
|
|
// thing here, so we simplify.
|
|
void mlir::torch::onnx_c::populateDefaultDomainGtoP(
|
|
OnnxCustomOpConversionPattern &patterns) {
|
|
patterns.onOp(
|
|
"HardSigmoid", 6,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value tensorOperand;
|
|
float alpha, beta;
|
|
if (binder.tensorOperand(tensorOperand) ||
|
|
binder.f32FloatAttr(alpha, "alpha", 0.2f) ||
|
|
binder.f32FloatAttr(beta, "beta", 0.5f) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
// HardSigmoid computes the following expression:
|
|
// max(0, min(1, alpha * x + beta))
|
|
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(alpha));
|
|
Value constBeta = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(beta));
|
|
|
|
// Expression: alpha * x + beta
|
|
Value alphaMulX = rewriter.create<Torch::AtenMulScalarOp>(
|
|
binder.getLoc(), resultType, tensorOperand, constAlpha);
|
|
Value constOne = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(1.0));
|
|
Value alphaMulXPlusBeta = rewriter.create<Torch::AtenAddScalarOp>(
|
|
binder.getLoc(), resultType, alphaMulX, constBeta,
|
|
/*alpha=*/constOne);
|
|
|
|
// Expression: min(1, alpha * x + beta)
|
|
Value oneTensor =
|
|
createRank0Tensor(rewriter, binder.getLoc(), resultType, constOne);
|
|
Value minExpression = rewriter.create<Torch::AtenMinimumOp>(
|
|
binder.getLoc(), resultType, oneTensor, alphaMulXPlusBeta);
|
|
|
|
// Expression: max(0, min(1, alpha * x + beta))
|
|
Value constZero = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getF64FloatAttr(0.0));
|
|
Value zeroTensor =
|
|
createRank0Tensor(rewriter, binder.getLoc(), resultType, constZero);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaximumOp>(
|
|
binder.op, resultType, zeroTensor, minExpression);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Gelu", 20, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value operand;
|
|
Torch::ValueTensorType resultType;
|
|
std::string approximate;
|
|
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.customOpNameStringAttr(approximate, "approximate", "none"))
|
|
return failure();
|
|
|
|
Value vApproximate = rewriter.create<Torch::ConstantStrOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::StringType>(),
|
|
rewriter.getStringAttr(approximate));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenGeluOp>(binder.op, resultType,
|
|
operand, vApproximate);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"GridSample", 17,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input;
|
|
Value grid;
|
|
if (binder.tensorOperandAtIndex(input, 0) ||
|
|
binder.tensorOperandAtIndex(grid, 1) ||
|
|
binder.tensorResultType(resultType))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "operand grid_sampler bind failure");
|
|
|
|
auto inputTensorType = cast<Torch::ValueTensorType>(input.getType());
|
|
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
|
|
uint32_t inputRank = inputShape.size();
|
|
auto gridTensorType = cast<Torch::ValueTensorType>(grid.getType());
|
|
ArrayRef<int64_t> gridShape = gridTensorType.getSizes();
|
|
uint32_t gridRank = gridShape.size();
|
|
|
|
if (inputRank != 4)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"only input rank 4 supported");
|
|
if (gridRank != 4)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"only grid rank 4 supported");
|
|
if (inputShape[0] != gridShape[0])
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "N must be same for input and grid");
|
|
if (gridShape[3] != 2)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"gridShape[3] expected to be 2");
|
|
std::string iModeString;
|
|
int64_t iModeInt;
|
|
if (binder.customOpNameStringAttr(iModeString, "mode", "linear"))
|
|
return rewriter.notifyMatchFailure(binder.op, "mode bind failure");
|
|
|
|
if (iModeString == "linear" || iModeString == "bilinear") {
|
|
iModeInt = 0;
|
|
} else if (iModeString == "nearest") {
|
|
iModeInt = 1;
|
|
} else {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "currently only mode : linear and nearest supported");
|
|
}
|
|
|
|
std::string padding;
|
|
if (binder.customOpNameStringAttr(padding, "padding_mode", "zeros"))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"padding_mode bind failure");
|
|
if (padding != "zeros")
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "currently only padding_mode : zeros supported");
|
|
int64_t align;
|
|
if (binder.s64IntegerAttr(align, "align_corners", 0))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"align_corners bind failure");
|
|
|
|
Value interpolationMode = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), iModeInt));
|
|
|
|
Value paddingMode = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
|
|
|
bool alignMode = align;
|
|
Value alignCorners = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
|
|
rewriter.getBoolAttr(alignMode));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenGridSamplerOp>(
|
|
binder.op, resultType, input, grid, interpolationMode, paddingMode,
|
|
alignCorners);
|
|
return success();
|
|
});
|
|
patterns.onOp("GRU", 1, onnx_c::OnnxGruExpander);
|
|
patterns.onOp(
|
|
"If", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value conditionTensor;
|
|
if (binder.tensorOperand(conditionTensor)) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"condition bind failure");
|
|
}
|
|
|
|
auto conditionType =
|
|
cast<Torch::ValueTensorType>(conditionTensor.getType());
|
|
if (!conditionType || conditionType.getSizes().size() != 1)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "condition must have one single element per "
|
|
"https://onnx.ai/onnx/operators/onnx__If.html");
|
|
auto conditionInt = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
conditionTensor);
|
|
auto conditionBool = rewriter.create<Torch::AtenBoolIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::BoolType>(), conditionInt);
|
|
|
|
llvm::SmallVector<mlir::Type> resultTypes;
|
|
if (binder.tensorResultTypes(resultTypes)) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"result type bind failure");
|
|
}
|
|
|
|
Region *thenRegion, *elseRegion;
|
|
if (binder.getRegionAtIndex(elseRegion, 0) ||
|
|
binder.getRegionAtIndex(thenRegion, 1)) {
|
|
return rewriter.notifyMatchFailure(binder.op, "region bind failure");
|
|
}
|
|
|
|
auto primIfOp = rewriter.create<Torch::PrimIfOp>(
|
|
binder.getLoc(), TypeRange(resultTypes), conditionBool);
|
|
|
|
auto inlineIfCase = [&](Region &srcRegion, Region &dstRegion) {
|
|
rewriter.inlineRegionBefore(srcRegion, dstRegion, dstRegion.begin());
|
|
};
|
|
inlineIfCase(*thenRegion, primIfOp.getThenRegion());
|
|
inlineIfCase(*elseRegion, primIfOp.getElseRegion());
|
|
|
|
auto replaceTerminator = [&](Region ®ion) {
|
|
PatternRewriter::InsertionGuard guard(rewriter);
|
|
Operation *terminator = region.front().getTerminator();
|
|
rewriter.setInsertionPoint(terminator);
|
|
rewriter.replaceOpWithNewOp<Torch::PrimIfYieldOp>(
|
|
terminator, terminator->getOperands());
|
|
};
|
|
replaceTerminator(primIfOp.getThenRegion());
|
|
replaceTerminator(primIfOp.getElseRegion());
|
|
|
|
rewriter.replaceOp(binder.op, primIfOp.getResults());
|
|
return success();
|
|
});
|
|
patterns.onOp("Less", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenLtTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp("LessOrEqual", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenLeTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp("Log", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenLogOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Loop", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
// Get all operands (maxTripCount, cond, ....inits....)
|
|
llvm::SmallVector<Value> operands;
|
|
if (binder.tensorOperandsList(operands) || operands.size() == 0 ||
|
|
binder.getNumOperands() < 2) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Failed to get required operands");
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Type> operandTypeVec;
|
|
if (binder.tensorOperandTypes(operandTypeVec) ||
|
|
operandTypeVec.size() == 0) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Failed to get operandTypes");
|
|
}
|
|
|
|
Region *loopBodyIn;
|
|
if (binder.getRegionAtIndex(loopBodyIn, 0)) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Failed getting LoopBody Region");
|
|
}
|
|
|
|
// MaxTripCount - tensor int64 scalar (or empty)
|
|
Value maxTripCountTensor = operands[0];
|
|
auto maxTripCountInt = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
maxTripCountTensor);
|
|
|
|
// Condition - tensor bool scalar (or empty)
|
|
Value conditionTensor = operands[1];
|
|
auto conditionInt = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
conditionTensor);
|
|
auto conditionBool = rewriter.create<Torch::AtenBoolIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::BoolType>(), conditionInt);
|
|
// To be used for "for like" loop case
|
|
auto constBoolTrue = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getBoolAttr(true));
|
|
|
|
// Others (if present) - variadic (can be tensors and scalar values)
|
|
if (binder.getNumOperands() > 2) {
|
|
operandTypeVec.erase(operandTypeVec.begin(),
|
|
operandTypeVec.begin() + 2);
|
|
operands.erase(operands.begin(), operands.begin() + 2);
|
|
}
|
|
|
|
auto getOpName = [](Operation *op) -> std::string {
|
|
std::string name = op->getName().getStringRef().str();
|
|
if (name != "torch.operator")
|
|
return name;
|
|
// for unconverted onnx ops
|
|
return mlir::dyn_cast<StringAttr>(op->getAttr("name"))
|
|
.getValue()
|
|
.str();
|
|
};
|
|
|
|
// PrimLoop Op expectes inputCondition to be boolConstantTrue
|
|
// to decide if the loopOp is `forlike`. Use loopIsForLike to
|
|
// ensure appropriate inputCondition is set
|
|
// Case 1 : loopCondInp -> identity -> terminator(loopCondOut)
|
|
bool loopIsForLike = false;
|
|
auto case1ForLike = [&getOpName](Region *loopBody) -> bool {
|
|
Value onnxLoopBodyCondIn = loopBody->front().getArgument(1);
|
|
if (!onnxLoopBodyCondIn.hasOneUse())
|
|
return false;
|
|
Operation *inpCondUser = *onnxLoopBodyCondIn.getUsers().begin();
|
|
if (getOpName(inpCondUser) != "onnx.Identity") {
|
|
return false;
|
|
}
|
|
if (!inpCondUser->hasOneUse() ||
|
|
getOpName(*(inpCondUser->getUsers().begin())) !=
|
|
"torch.operator_terminator")
|
|
return false;
|
|
return true;
|
|
};
|
|
loopIsForLike = case1ForLike(loopBodyIn);
|
|
|
|
Value loopInitCondition =
|
|
loopIsForLike ? constBoolTrue : conditionBool.getResult();
|
|
auto loc = binder.getLoc();
|
|
mlir::ImplicitLocOpBuilder b(loc, rewriter);
|
|
auto loop = b.create<Torch::PrimLoopOp>(
|
|
TypeRange(operandTypeVec), maxTripCountInt, loopInitCondition,
|
|
ValueRange(operands));
|
|
|
|
rewriter.cloneRegionBefore(*loopBodyIn, loop.getRegion(),
|
|
loop.getRegion().begin());
|
|
|
|
// primLoopOp loopBody expects torch.int as first arg
|
|
// insert torch.int arg in loop body, convert to tensor,
|
|
// replace all uses of old arg, delete old arg.
|
|
auto loopVarArg = loop.getRegion().front().getArgument(0);
|
|
// insert new Arg
|
|
loop.getRegion().front().insertArgument(
|
|
0U, rewriter.getType<Torch::IntType>(), binder.getLoc());
|
|
auto newLoopVarArg = loop.getRegion().front().getArgument(0);
|
|
|
|
// convert int arg to tensor of original Type
|
|
rewriter.setInsertionPointToStart(&loop.getRegion().front());
|
|
Value loopVarVal = BlockArgument::Value(loopVarArg);
|
|
auto newTensor = rewriter.create<Torch::PrimNumToTensorScalarOp>(
|
|
loop.getRegion().op_begin()->getLoc(), loopVarVal.getType(),
|
|
newLoopVarArg);
|
|
|
|
loopVarArg.replaceAllUsesWith(newTensor);
|
|
loop.getRegion().eraseArgument(1);
|
|
|
|
// primLoopOp loopBody has no condition arg
|
|
auto condArg = loop.getRegion().front().getArgument(1);
|
|
if (!condArg.use_empty())
|
|
condArg.replaceAllUsesWith(conditionTensor);
|
|
|
|
// replace terminator
|
|
PatternRewriter::InsertionGuard guard(rewriter);
|
|
Operation *terminator = loop.getRegion().front().getTerminator();
|
|
rewriter.setInsertionPoint(terminator);
|
|
|
|
// results - n loop carried dependencies and k scan outputs
|
|
// Fail when there are scanOutputs in onnxLoop (K>0);
|
|
// unsupported for now
|
|
if (terminator->getNumOperands() !=
|
|
loop.getRegion().getNumArguments() - 1) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "scanOutputs in loop body unsupported");
|
|
}
|
|
|
|
// Get remaining operands from onnxLoopBody's terminator Op
|
|
// these are all the loop carried dependencies in the loop body
|
|
auto terminatorOperands = terminator->getOperands();
|
|
llvm::SmallVector<Value> remTerminatorOperands(
|
|
terminatorOperands.begin() + 1, terminatorOperands.end());
|
|
Value terminatorCond;
|
|
if (loopIsForLike) {
|
|
terminatorCond = constBoolTrue;
|
|
} else {
|
|
// Only use when loop is not forlike
|
|
Value terminatorCondTensor = terminatorOperands[0];
|
|
auto terminatorCondInt = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
terminatorCondTensor);
|
|
auto terminatorCondBool = rewriter.create<Torch::AtenBoolIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
|
|
terminatorCondInt);
|
|
terminatorCond = terminatorCondBool.getResult();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::PrimLoopConditionOp>(
|
|
terminator, terminatorCond, remTerminatorOperands);
|
|
|
|
loop.getRegion().eraseArgument(1);
|
|
rewriter.replaceOp(binder.op, loop);
|
|
return success();
|
|
});
|
|
patterns.onOp("LSTM", 1, onnx_c::OnnxLstmExpander);
|
|
patterns.onOp(
|
|
"LogSoftmax", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value input;
|
|
Torch::ValueTensorType resultType;
|
|
if (binder.tensorOperand(input) || binder.tensorResultType(resultType))
|
|
return failure();
|
|
int64_t axis;
|
|
if (binder.s64IntegerAttr(axis, "axis", -1))
|
|
return rewriter.notifyMatchFailure(binder.op, "axis bind failure");
|
|
Value axisConst = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(axis));
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
rewriter.replaceOpWithNewOp<Torch::AtenLogSoftmaxIntOp>(
|
|
binder.op, resultType, input, axisConst, none);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"LogSoftmax", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Value input;
|
|
Torch::ValueTensorType resultType;
|
|
if (binder.tensorOperand(input) || binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
int64_t axis;
|
|
if (binder.s64IntegerAttr(axis, "axis", 1))
|
|
return rewriter.notifyMatchFailure(binder.op, "axis bind failure");
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(input);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unsupported: unranked tensor");
|
|
int64_t rank = *maybeRank;
|
|
// if negative axis is provided, then flip it to a positive axis
|
|
if (axis < 0) {
|
|
axis = rank + axis;
|
|
}
|
|
// need input type and sizes to flatten/unflatten later.
|
|
auto inputTy = cast<Torch::ValueTensorType>(input.getType());
|
|
if (!inputTy || !inputTy.hasSizes())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "failed to get input type or sizes");
|
|
|
|
Value axisConst = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(axis));
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value cstEnd = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(rank - 1));
|
|
|
|
// The old version of LogSoftmax flattens post-axis dims, performs
|
|
// LogSoftmax on the flattened dim, then unflattens back to the original
|
|
// shape.
|
|
|
|
// this section gets some size information necessary for
|
|
// flattening/unflattening
|
|
if (!inputTy || !inputTy.hasSizes())
|
|
return failure();
|
|
llvm::ArrayRef<int64_t> allDims(inputTy.getSizes());
|
|
llvm::ArrayRef<int64_t> rightDims(allDims.begin() + axis,
|
|
allDims.end());
|
|
llvm::SmallVector<int64_t> leftDims(allDims.begin(),
|
|
allDims.begin() + axis);
|
|
int64_t prodRightSizes = 1;
|
|
llvm::SmallVector<Value> rightDimConsts;
|
|
for (int64_t n : rightDims) {
|
|
rightDimConsts.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(n)));
|
|
if (n == Torch::kUnknownSize) {
|
|
prodRightSizes = -1;
|
|
break;
|
|
}
|
|
prodRightSizes *= n;
|
|
}
|
|
leftDims.push_back(prodRightSizes);
|
|
// the following list will be used to unflatten the right side
|
|
Value rightDimsPrimList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
rightDimConsts);
|
|
auto flatRightTy = rewriter.getType<Torch::ValueTensorType>(
|
|
leftDims, inputTy.getOptionalDtype());
|
|
// flatten input
|
|
Value inputFlatRight = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
|
|
binder.getLoc(), flatRightTy, input, axisConst, cstEnd);
|
|
// compute lsm over flattened index
|
|
Value outputFlatRight = rewriter.create<Torch::AtenLogSoftmaxIntOp>(
|
|
binder.getLoc(), flatRightTy, inputFlatRight, axisConst, none);
|
|
// unflatten
|
|
rewriter.replaceOpWithNewOp<Torch::AtenUnflattenIntOp>(
|
|
binder.op, resultType, outputFlatRight, axisConst,
|
|
rightDimsPrimList);
|
|
return success();
|
|
});
|
|
patterns.onOp("MatMul", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMatmulOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"MatMulInteger", 10,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs, lhsZp, rhsZp;
|
|
if (binder.tensorOperandAtIndex(lhs, 0) ||
|
|
binder.tensorOperandAtIndex(rhs, 1) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto lhsTy = dyn_cast<Torch::ValueTensorType>(lhs.getType());
|
|
auto rhsTy = dyn_cast<Torch::ValueTensorType>(rhs.getType());
|
|
|
|
if (binder.tensorOperandAtIndex(lhsZp, 2)) {
|
|
lhsZp = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
|
}
|
|
|
|
if (binder.tensorOperandAtIndex(rhsZp, 3)) {
|
|
rhsZp = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
|
}
|
|
|
|
if (auto zpTy = dyn_cast<Torch::ValueTensorType>(lhsZp.getType())) {
|
|
for (auto dim : zpTy.getSizes())
|
|
if (dim != 1)
|
|
return failure();
|
|
lhsZp = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), lhsZp);
|
|
}
|
|
|
|
if (auto zpTy = dyn_cast<Torch::ValueTensorType>(rhsZp.getType())) {
|
|
for (auto dim : zpTy.getSizes())
|
|
if (dim != 1)
|
|
return failure();
|
|
rhsZp = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), rhsZp);
|
|
}
|
|
|
|
Value scale = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(1.0));
|
|
|
|
auto lhsQTy = getQTorchTypeFromTorchIntType(lhsTy);
|
|
auto rhsQTy = getQTorchTypeFromTorchIntType(rhsTy);
|
|
|
|
if (!lhsQTy || !rhsQTy)
|
|
return rewriter.notifyMatchFailure(binder.op, "failed to get qtype");
|
|
|
|
lhs = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
|
|
binder.getLoc(), lhsQTy, lhs, scale, lhsZp);
|
|
rhs = rewriter.create<Torch::Aten_MakePerTensorQuantizedTensorOp>(
|
|
binder.getLoc(), rhsQTy, rhs, scale, rhsZp);
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMatmulOp>(binder.op, resultType,
|
|
lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp("Mul", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMulTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Multinomial", 7,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value self;
|
|
int64_t onnxDtype, sampleSize;
|
|
|
|
if (binder.tensorOperand(self) ||
|
|
binder.s64IntegerAttr(onnxDtype, "dtype", 6) ||
|
|
binder.s64IntegerAttr(sampleSize, "sample_size", 1) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
|
|
if (binder.op->hasAttr("torch.onnx.seed")) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unimplemented: support not present for seed attribute");
|
|
}
|
|
|
|
if (sampleSize <= 0) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"unsupported: sample_size <= 0");
|
|
}
|
|
|
|
std::optional<int64_t> torchDtype =
|
|
onnxDtypeIntToTorchDtypeInt(onnxDtype);
|
|
if (!torchDtype.has_value()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"unimplemented support for the given dtype conversion");
|
|
}
|
|
|
|
Value torchDtypeIntValue = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(torchDtype.value()));
|
|
Value numSamples = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(sampleSize));
|
|
|
|
// PRG is seeded globally by default
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
// Sample with replacement by default (no onnx equivalent in arguments)
|
|
Value cstTrue = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getBoolAttr(true));
|
|
|
|
// Torch Multinomial always produces a LongTensor
|
|
Torch::ValueTensorType selfType =
|
|
cast<Torch::ValueTensorType>(self.getType());
|
|
Type int64Dtype =
|
|
IntegerType::get(selfType.getContext(), 64, IntegerType::Signed);
|
|
int64_t batchSize = selfType.getSizes()[0];
|
|
SmallVector<int64_t> outShapes({batchSize, sampleSize});
|
|
Torch::ValueTensorType multinomialOutputType =
|
|
Torch::ValueTensorType::get(selfType.getContext(), outShapes,
|
|
int64Dtype);
|
|
Value multinomialTensor = rewriter.create<Torch::AtenMultinomialOp>(
|
|
binder.getLoc(), multinomialOutputType, self, numSamples, cstTrue,
|
|
none);
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getBoolAttr(false));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenToDtypeOp>(
|
|
binder.op, resultType, multinomialTensor, torchDtypeIntValue,
|
|
cstFalse, cstFalse, none);
|
|
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"NegativeLogLikelihoodLoss", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value self, target, weight, reduction, ignore_index;
|
|
int64_t ignore_index_int;
|
|
std::string reduction_str;
|
|
|
|
if (binder.tensorOperandAtIndex(self, 0) ||
|
|
binder.tensorOperandAtIndex(target, 1) ||
|
|
binder.s64IntegerAttr(ignore_index_int, "ignore_index", -100) ||
|
|
binder.customOpNameStringAttr(reduction_str, "reduction", "mean") ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
|
|
// optional third tensor argument
|
|
if (binder.tensorOperandAtIndex(weight, 2)) {
|
|
weight = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
}
|
|
|
|
ignore_index = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(ignore_index_int));
|
|
|
|
// convert string reduction attr to standardized integer enum value
|
|
int reduction_value =
|
|
torch_upstream::get_loss_reduction_enum(reduction_str);
|
|
reduction = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(reduction_value));
|
|
|
|
Value nllLoss = rewriter
|
|
.create<Torch::AtenNllLossForwardOp>(
|
|
binder.getLoc(), resultType, resultType, self,
|
|
target, weight, reduction, ignore_index)
|
|
->getResult(0);
|
|
|
|
rewriter.replaceOp(binder.op, nllLoss);
|
|
return success();
|
|
});
|
|
patterns.onOp("NonZero", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenNonzeroOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"MaxPool", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
std::string autoPad;
|
|
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"auto_pad bind failure");
|
|
if (autoPad != "NOTSET")
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: auto_pad != NOTSET");
|
|
|
|
Torch::ValueTensorType resultTypeOut;
|
|
Value operand;
|
|
int64_t ceilMode, storageOrder;
|
|
// TODO: Add support for indices output and storage_order
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.s64IntegerAttr(ceilMode, "ceil_mode", 0) ||
|
|
binder.s64IntegerAttr(storageOrder, "storage_order", 0) ||
|
|
binder.tensorResultTypeAtIndex(resultTypeOut, 0))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"operand/ceil_mode/storage_order/resultType bind failure");
|
|
if (storageOrder != 0)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "storage_order setting is not supported.");
|
|
// Determine the rank of input tensor.
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(operand);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: unranked tensor");
|
|
int64_t rank = *maybeRank;
|
|
int64_t spatial = rank - 2;
|
|
|
|
SmallVector<int64_t> kernel, padding, strides, dilations;
|
|
if (binder.s64IntegerArrayAttr(kernel, "kernel_shape", {}))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"kernel_shape bind failure");
|
|
if (kernel.size() != static_cast<size_t>(spatial))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "kernel list size does not match the number of axes");
|
|
if (binder.s64IntegerArrayAttr(padding, "pads", {}))
|
|
return rewriter.notifyMatchFailure(binder.op, "pads bind failure");
|
|
if (!padding.empty() &&
|
|
padding.size() != static_cast<size_t>(2 * spatial))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "padding list must contain (begin,end) pair for each "
|
|
"spatial axis");
|
|
if (binder.s64IntegerArrayAttr(strides, "strides", {}))
|
|
return rewriter.notifyMatchFailure(binder.op, "strides bind failure");
|
|
if (!strides.empty() && strides.size() != static_cast<size_t>(spatial))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "strides list size does not match the number of axes");
|
|
if (binder.s64IntegerArrayAttr(dilations, "dilations", {}))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"dilations bind failure");
|
|
|
|
if (padding.empty())
|
|
padding.resize(spatial, 0);
|
|
if (strides.empty())
|
|
strides.resize(spatial, 1);
|
|
if (dilations.empty())
|
|
dilations.resize(spatial, 1);
|
|
|
|
// If the padding is symmetric we can push the padding operation to the
|
|
// torch operator.
|
|
if (padding.size() == static_cast<size_t>(2 * spatial)) {
|
|
bool equal = true;
|
|
for (int i = 0; i < spatial; ++i) {
|
|
equal = equal && (padding[i] == padding[i + spatial]);
|
|
}
|
|
if (equal)
|
|
padding.resize(spatial);
|
|
}
|
|
|
|
// Torch pool operators require equal padding on each size of each
|
|
// dimension so we materialize the padding behavior explicitly and set
|
|
// the padding to 0.
|
|
if (padding.size() == static_cast<size_t>(2 * spatial)) {
|
|
auto operandTy = cast<Torch::ValueTensorType>(operand.getType());
|
|
llvm::SmallVector<int64_t> shuffledPadding(spatial * 2);
|
|
llvm::SmallVector<int64_t> paddedShape(operandTy.getSizes());
|
|
shuffledPadding.resize(2 * rank);
|
|
for (int i = 0; i < spatial; ++i) {
|
|
paddedShape[i + 2] += padding[i] + padding[i + spatial];
|
|
shuffledPadding[2 * i] = padding[i];
|
|
shuffledPadding[2 * i + 1] = padding[i + spatial];
|
|
}
|
|
|
|
Value shuffledPaddingList =
|
|
createConstantIntList(binder, rewriter, padding);
|
|
Value zero;
|
|
if (isa<FloatType>(resultTypeOut.getDtype())) {
|
|
zero = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(
|
|
std::numeric_limits<double>::lowest()));
|
|
} else if (isa<IntegerType>(resultTypeOut.getDtype())) {
|
|
zero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(
|
|
std::numeric_limits<int64_t>::lowest()));
|
|
}
|
|
|
|
auto paddedInputTy = rewriter.getType<Torch::ValueTensorType>(
|
|
paddedShape, operandTy.getDtype());
|
|
operand = rewriter.create<Torch::AtenConstantPadNdOp>(
|
|
binder.getLoc(), paddedInputTy, operand, shuffledPaddingList,
|
|
zero);
|
|
padding.clear();
|
|
padding.resize(spatial, 0);
|
|
}
|
|
|
|
Value kernelSizeList = createConstantIntList(binder, rewriter, kernel);
|
|
Value paddingList = createConstantIntList(binder, rewriter, padding);
|
|
Value stridesList = createConstantIntList(binder, rewriter, strides);
|
|
Value dilationsList =
|
|
createConstantIntList(binder, rewriter, dilations);
|
|
Value cstCeilMode =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), ceilMode);
|
|
|
|
if (binder.op->getNumResults() == 2) {
|
|
Torch::ValueTensorType resultTypeIndices;
|
|
if (binder.tensorResultTypeAtIndex(resultTypeIndices, 1))
|
|
return failure();
|
|
|
|
if (rank == 3)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Unimplemented: AtenMaxPool1dWithIndicesOp");
|
|
|
|
if (rank == 4) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool2dWithIndicesOp>(
|
|
binder.op, resultTypeOut, resultTypeIndices, operand,
|
|
kernelSizeList, stridesList, paddingList, dilationsList,
|
|
cstCeilMode);
|
|
return success();
|
|
}
|
|
if (rank == 5) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool3dWithIndicesOp>(
|
|
binder.op, resultTypeOut, resultTypeIndices, operand,
|
|
kernelSizeList, stridesList, paddingList, dilationsList,
|
|
cstCeilMode);
|
|
return success();
|
|
}
|
|
} else {
|
|
if (rank == 3) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool1dOp>(
|
|
binder.op, resultTypeOut, operand, kernelSizeList, stridesList,
|
|
paddingList, dilationsList, cstCeilMode);
|
|
return success();
|
|
}
|
|
if (rank == 4) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool2dOp>(
|
|
binder.op, resultTypeOut, operand, kernelSizeList, stridesList,
|
|
paddingList, dilationsList, cstCeilMode);
|
|
return success();
|
|
}
|
|
if (rank == 5) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool3dOp>(
|
|
binder.op, resultTypeOut, operand, kernelSizeList, stridesList,
|
|
paddingList, dilationsList, cstCeilMode);
|
|
return success();
|
|
}
|
|
}
|
|
return rewriter.notifyMatchFailure(binder.op, "No rank is matched.");
|
|
});
|
|
patterns.onOp(
|
|
"MaxRoiPool", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
SmallVector<int64_t> pooledShape;
|
|
float spatialScale;
|
|
if (binder.s64IntegerArrayAttr(pooledShape, "pooled_shape", {}) ||
|
|
binder.f32FloatAttr(spatialScale, "spatial_scale", 1.0f)) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Attribute bind failure");
|
|
}
|
|
Torch::ValueTensorType resultTy;
|
|
Value input, rois;
|
|
if (binder.tensorOperands(input, rois) ||
|
|
binder.tensorResultType(resultTy)) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Operand or result type mismatch");
|
|
}
|
|
|
|
Value outputShapeList =
|
|
createConstantIntList(binder, rewriter, pooledShape);
|
|
Location loc = binder.getLoc();
|
|
|
|
auto inputTy = cast<Torch::ValueTensorType>(input.getType());
|
|
auto roisTy = cast<Torch::ValueTensorType>(rois.getType());
|
|
if (!inputTy || !inputTy.hasSizes())
|
|
return failure();
|
|
if (!roisTy || !roisTy.hasSizes())
|
|
return failure();
|
|
|
|
auto intTy = rewriter.getIntegerType(64, true);
|
|
auto floatTy = roisTy.getDtype();
|
|
auto torchIntTy = rewriter.getType<Torch::IntType>();
|
|
|
|
Value spatialScaleValue = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(spatialScale));
|
|
|
|
Value boolTrue = rewriter.create<Torch::ConstantBoolOp>(
|
|
loc, rewriter.getBoolAttr(true));
|
|
|
|
ArrayRef<int64_t> inputShape = inputTy.getSizes();
|
|
int64_t inputRank = inputShape.size();
|
|
if (inputRank < 4) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Rank of input tensor must be >= 4");
|
|
}
|
|
|
|
ArrayRef<int64_t> roisShape = roisTy.getSizes();
|
|
if (!roisTy.areAllSizesKnown() || roisShape.size() != 2 ||
|
|
roisShape[1] != 5) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected ROIs to be statically sized tensor of shape "
|
|
"(num_rois, 5)");
|
|
}
|
|
int64_t numRois = roisShape[0];
|
|
|
|
/* The implementation is based on the following algorithm:
|
|
MaxRoiPool <pooled_shape, spatial_scale>(
|
|
input : tensor<float>, rois : tensor<?x5xfloat>) => (output)
|
|
{
|
|
* Step 1: Extract ROI specification
|
|
- Each ROI is represented as [batch_id, x1, y1, x2, y2], where
|
|
range is inclusive of x1, y1, x2, and y2
|
|
- The range values are scaled by spatial_scale
|
|
|
|
BatchIdxsFloat = Select(rois, dim=1, index=0)
|
|
BatchIdxs = CastLong(BatchIdxsFloat)
|
|
RoiBBsFloat = Slice(rois, dim=1, start=1, end=5, stride=1)
|
|
RoiBBsScaledFloat = MulScalar(RoiBBsFloat, spatial_scale)
|
|
RoiBBsScaled = CastLong(RoiBBsScaledFloat)
|
|
|
|
* Step 2: Iteratively pool ROIs
|
|
pooledROIs = []
|
|
for (roiIdx = 0; roiIdx < len(rois); roiIdx++) {
|
|
* Step 2a: For each ROI, we extract batch_id, x1, y1, x2, & y2
|
|
RoiSpec = Select(RoiBBsScaled, 0, roiIdx) : tensor<4xint>
|
|
roiValues = []
|
|
for (specIdx = 0; specIdx < 5; specIdx++) {
|
|
if (specIdx == 0)
|
|
SpecTensor = Select(BatchIdxs, 1, roiIdx) : tensor<int>
|
|
else
|
|
SpecTensor = Select(RoiSpec, 0, specIdx-1) : tensor<int>
|
|
SpecValue = Item(specTensor) : torch.int
|
|
roiValues.push(SpecValue)
|
|
}
|
|
BatchIdx, X1, Y1, X2, Y2 = roiValues
|
|
|
|
* Step 2b: extract image from input and extract region
|
|
- X2 and Y2 are incremented by 1 to make range inclusive
|
|
- width and height dimension are calculated once outside of loop
|
|
but intuition is expressed more clearly below
|
|
|
|
image = Select(input, 0, BatchIdx)
|
|
widthDim = rank(image) - 1
|
|
heightDim = rank(image) - 2
|
|
|
|
imageExtractedY = Slice(image, heightDim, Y1, Y2 + 1, 1)
|
|
region = Slice(image, widthDim, X1, X2 + 1, 1)
|
|
|
|
* Step 2c: apply adaptive max pooling to pool region of interest
|
|
into final pooled size
|
|
pooledROI = AdaptiveMaxPool2d(region, pooled_shape)
|
|
pooledROIs.push(pooledROI)
|
|
}
|
|
|
|
* Step 3: Stack pooled regions and return final output
|
|
return output = Stack(pooledRois, dim=0)
|
|
}
|
|
*/
|
|
|
|
SmallVector<Value> constInts(6);
|
|
for (int i = 0; i <= 5; i++) {
|
|
constInts[i] = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
}
|
|
|
|
int64_t widthDim = inputRank - 2;
|
|
Value widthDimValue = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(widthDim));
|
|
|
|
int64_t heightDim = inputRank - 3;
|
|
Value heightDimValue = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(heightDim));
|
|
|
|
// extract indices of images within batch
|
|
auto batchIdxsShape = SmallVector<int64_t>{Torch::kUnknownSize};
|
|
auto batchIdxsFloatTy =
|
|
rewriter.getType<Torch::ValueTensorType>(batchIdxsShape, floatTy);
|
|
Value batchIdxsFloat = rewriter.create<Torch::AtenSelectIntOp>(
|
|
loc, batchIdxsFloatTy, rois, constInts[1], constInts[0]);
|
|
auto batchIdxsIntTy =
|
|
rewriter.getType<Torch::ValueTensorType>(batchIdxsShape, intTy);
|
|
Value batchIdxs = rewriter.create<Torch::Aten_CastLongOp>(
|
|
loc, batchIdxsIntTy, batchIdxsFloat, boolTrue);
|
|
|
|
// extract scaled ranges for regions of interest
|
|
auto roiBBsShape = SmallVector<int64_t>{Torch::kUnknownSize, 4};
|
|
auto roiBBsFloatTy =
|
|
rewriter.getType<Torch::ValueTensorType>(roiBBsShape, floatTy);
|
|
Value roiBBs = rewriter.create<Torch::AtenSliceTensorOp>(
|
|
loc, roiBBsFloatTy, rois, constInts[1], constInts[1], constInts[5],
|
|
constInts[1]);
|
|
Value roiBBsScaledFloat = rewriter.create<Torch::AtenMulScalarOp>(
|
|
loc, roiBBsFloatTy, roiBBs, spatialScaleValue);
|
|
auto roiBBsTy =
|
|
rewriter.getType<Torch::ValueTensorType>(roiBBsShape, intTy);
|
|
Value roiBBsScaled = rewriter.create<Torch::Aten_CastLongOp>(
|
|
loc, roiBBsTy, roiBBsScaledFloat, boolTrue);
|
|
|
|
SmallVector<Value> pooledRois;
|
|
|
|
for (int64_t i = 0; i < numRois; i++) {
|
|
Value roiIdx = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
|
|
auto roiSpecTy = rewriter.getType<Torch::ValueTensorType>(
|
|
roiBBsTy.getSizes().slice(1), intTy);
|
|
Value roiSpec = rewriter.create<Torch::AtenSelectIntOp>(
|
|
loc, roiSpecTy, roiBBsScaled, constInts[0], roiIdx);
|
|
|
|
// Load individual ROI specification values
|
|
SmallVector<Value> roiValues(5);
|
|
for (int specIdx = 0; specIdx < 5; specIdx++) {
|
|
auto intEmptyTensorTy = rewriter.getType<Torch::ValueTensorType>(
|
|
SmallVector<int64_t>{}, intTy);
|
|
Value specTensor;
|
|
if (specIdx == 0) { // batch index
|
|
specTensor = rewriter.create<Torch::AtenSelectIntOp>(
|
|
loc, intEmptyTensorTy, batchIdxs, constInts[0], roiIdx);
|
|
} else { // roi dimension
|
|
specTensor = rewriter.create<Torch::AtenSelectIntOp>(
|
|
loc, intEmptyTensorTy, roiSpec, constInts[0],
|
|
constInts[specIdx - 1]);
|
|
}
|
|
Value specValue =
|
|
rewriter.create<Torch::AtenItemOp>(loc, torchIntTy, specTensor);
|
|
roiValues[specIdx] = specValue;
|
|
}
|
|
Value batchIdx = roiValues[0], roiX1 = roiValues[1],
|
|
roiY1 = roiValues[2], roiX2 = roiValues[3],
|
|
roiY2 = roiValues[4];
|
|
|
|
// add 1 to make range ends inclusive as per ONNX implementation
|
|
roiX2 = rewriter.create<Torch::AtenAddOp>(loc, torchIntTy, roiX2,
|
|
constInts[1]);
|
|
roiY2 = rewriter.create<Torch::AtenAddOp>(loc, torchIntTy, roiY2,
|
|
constInts[1]);
|
|
|
|
auto imageTy = rewriter.getType<Torch::ValueTensorType>(
|
|
inputShape.slice(1), inputTy.getDtype());
|
|
Value image = rewriter.create<Torch::AtenSelectIntOp>(
|
|
loc, imageTy, input, constInts[0], batchIdx); // (NC x H x W)
|
|
|
|
SmallVector<int64_t> imageUnknownShape(imageTy.getSizes());
|
|
imageUnknownShape[heightDim] = Torch::kUnknownSize;
|
|
imageUnknownShape[widthDim] = Torch::kUnknownSize;
|
|
auto imageUnknownTy = rewriter.getType<Torch::ValueTensorType>(
|
|
imageUnknownShape, imageTy.getDtype());
|
|
|
|
// extract ROI from image
|
|
Value imageExtractedY = rewriter.create<Torch::AtenSliceTensorOp>(
|
|
loc, imageUnknownTy, image, heightDimValue, roiY1, roiY2,
|
|
constInts[1]);
|
|
Value region = rewriter.create<Torch::AtenSliceTensorOp>(
|
|
loc, imageUnknownTy, imageExtractedY, widthDimValue, roiX1, roiX2,
|
|
constInts[1]);
|
|
|
|
SmallVector<int64_t> pooledRegionShape(imageTy.getSizes());
|
|
pooledRegionShape[heightDim] = pooledShape[0];
|
|
pooledRegionShape[widthDim] = pooledShape[1];
|
|
auto pooledRegionTy = rewriter.getType<Torch::ValueTensorType>(
|
|
pooledRegionShape, imageTy.getDtype());
|
|
auto pooledRegionIndicesTy = rewriter.getType<Torch::ValueTensorType>(
|
|
pooledRegionShape, intTy);
|
|
|
|
// apply pooling on ROI
|
|
Value pooledRegion =
|
|
rewriter
|
|
.create<Torch::AtenAdaptiveMaxPool2dOp>(
|
|
loc, pooledRegionTy, pooledRegionIndicesTy, region,
|
|
outputShapeList)
|
|
.getResult0();
|
|
pooledRois.push_back(pooledRegion);
|
|
}
|
|
|
|
Value pooledRoisList = rewriter.create<Torch::PrimListConstructOp>(
|
|
loc, Torch::ListType::get(pooledRois[0].getType()), pooledRois);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenStackOp>(
|
|
binder.op, resultTy, pooledRoisList, constInts[0]);
|
|
|
|
return success();
|
|
});
|
|
patterns.onOp("Greater", 16,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
std::string direction;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenGtTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp("GreaterOrEqual", 16,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
std::string direction;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenGeTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"InstanceNormalization", 6,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
llvm::SmallVector<Value> operands;
|
|
float eps;
|
|
|
|
if (binder.tensorOperands(operands, 3) ||
|
|
binder.tensorResultType(resultType) || operands.size() != 3 ||
|
|
binder.f32FloatAttr(eps, "epsilon", 1e-05f)) {
|
|
return failure();
|
|
}
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value boolTrue =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
|
|
Value boolFalse =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
auto epsValue = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getF64FloatAttr(eps));
|
|
|
|
auto momentum = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getF64FloatAttr(0.0f));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenInstanceNormOp>(
|
|
binder.op, resultType, /* input */ operands[0],
|
|
/* weight */ operands[1],
|
|
/* bias */ operands[2], /* running mean */ none,
|
|
/* running var */ none,
|
|
/* use input stats */ boolTrue, momentum, epsValue,
|
|
/* cudnn enabled */ boolFalse);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Max", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
llvm::SmallVector<Value> operands;
|
|
if (binder.tensorOperandsList(operands) ||
|
|
binder.tensorResultType(resultType) || operands.size() == 0) {
|
|
return failure();
|
|
}
|
|
Value result = operands[0];
|
|
for (uint64_t i = 1; i < operands.size(); i++) {
|
|
result = rewriter.create<Torch::AtenMaximumOp>(
|
|
binder.getLoc(), resultType, result, operands[i]);
|
|
}
|
|
rewriter.replaceOp(binder.op, result);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Min", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
llvm::SmallVector<Value> operands;
|
|
if (binder.tensorOperandsList(operands) ||
|
|
binder.tensorResultType(resultType) || operands.size() == 0) {
|
|
return failure();
|
|
}
|
|
Value result = operands[0];
|
|
for (uint64_t i = 1; i < operands.size(); i++) {
|
|
result = rewriter.create<Torch::AtenMinimumOp>(
|
|
binder.getLoc(), resultType, result, operands[i]);
|
|
}
|
|
rewriter.replaceOp(binder.op, result);
|
|
return success();
|
|
});
|
|
patterns.onOp("Neg", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenNegOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Not", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
|
|
auto loc = binder.getLoc();
|
|
auto operandTy = cast<Torch::ValueTensorType>(operand.getType());
|
|
auto eTy = operandTy.getDtype();
|
|
|
|
if (!eTy.isInteger(1)) {
|
|
auto i1ty = rewriter.getI1Type();
|
|
auto ty = rewriter.getType<Torch::ValueTensorType>(
|
|
operandTy.getSizes(), i1ty);
|
|
auto torchqTy = Torch::getScalarTypeForType(i1ty);
|
|
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
|
static_cast<int64_t>(torchqTy)));
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
operand = rewriter.create<Torch::AtenToDtypeOp>(
|
|
loc, ty, operand, tyConst,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/none);
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseNotOp>(
|
|
binder.op, resultType, operand);
|
|
return success();
|
|
});
|
|
patterns.onOp("Or", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenBitwiseOrTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"GatherND", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value data, indices;
|
|
int64_t batchDimCount;
|
|
if (binder.tensorOperandAtIndex(data, 0) ||
|
|
binder.tensorOperandAtIndex(indices, 1) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64IntegerAttr(batchDimCount, "batch_dims", 0))
|
|
return failure();
|
|
|
|
Location loc = binder.getLoc();
|
|
auto dataTy = cast<Torch::ValueTensorType>(data.getType());
|
|
auto indicesTy = cast<Torch::ValueTensorType>(indices.getType());
|
|
if (!dataTy || !dataTy.hasSizes())
|
|
return failure();
|
|
if (!indicesTy || !indicesTy.hasSizes())
|
|
return failure();
|
|
|
|
// step 1. Get shapes and ranks of data and indices. The last dimension
|
|
// of indices is expected to be static.
|
|
ArrayRef<int64_t> dataShape = dataTy.getSizes();
|
|
int64_t dataRank = dataShape.size();
|
|
ArrayRef<int64_t> indicesShape = indicesTy.getSizes();
|
|
int64_t indicesRank = indicesShape.size();
|
|
int64_t indicesLastDim = indicesShape.back();
|
|
// Given data tensor of rank r >= 1, indices tensor of rank q >= 1, and
|
|
// batch_dims integer b, onnx.gather_nd gathers slices of data into an
|
|
// output tensor of rank q + r - indices_shape[-1] - 1 - b.
|
|
// indices_shape[-1] must be static to have deterministic output rank.
|
|
if (dataRank < 1 || indicesRank < 1)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "expected data and indices rank to be >= 1");
|
|
if (batchDimCount >= std::min(dataRank, indicesRank))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "batch_dims should be strictly less than "
|
|
"min(rank(data), rank(indices))");
|
|
if (indicesLastDim == Torch::kUnknownSize)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "expected last dimension of indices to be static");
|
|
|
|
// step 2. Get dimension list of data.
|
|
SmallVector<int64_t> batchShape;
|
|
SmallVector<Value> batchDims;
|
|
SmallVector<Value> dataDims;
|
|
for (int64_t i = 0; i < dataRank; ++i) {
|
|
Value k = rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), i);
|
|
Value dataDim = rewriter.create<Torch::AtenSizeIntOp>(loc, data, k);
|
|
dataDims.push_back(dataDim);
|
|
if (i < batchDimCount) {
|
|
batchShape.push_back(dataShape[i]);
|
|
batchDims.push_back(dataDim);
|
|
}
|
|
}
|
|
|
|
// step 3. Get dimension list of indices.
|
|
Value constZero = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
Value constOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
SmallVector<Value> indicesDimsMinusOne;
|
|
SmallVector<Value> unflattenIndicesDims;
|
|
Value indicesFlattenDim = constOne;
|
|
for (int64_t i = 0; i < indicesRank - 1; ++i) {
|
|
Value k = rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), i);
|
|
Value indicesDim =
|
|
rewriter.create<Torch::AtenSizeIntOp>(loc, indices, k);
|
|
indicesDimsMinusOne.push_back(indicesDim);
|
|
if (i >= batchDimCount) {
|
|
unflattenIndicesDims.push_back(indicesDim);
|
|
indicesFlattenDim = rewriter.create<Torch::AtenMulIntOp>(
|
|
loc, indicesFlattenDim, indicesDim);
|
|
}
|
|
}
|
|
ArrayRef<int64_t> indicesShapeMinusOne = indicesShape.drop_back();
|
|
|
|
// Algorithm: We can not directly perform torch.gather as it requires
|
|
// the ranks of data(`r`) and indices(`q`) to be same. So we will
|
|
// perform collapse and reshape operations to match the ranks of data
|
|
// and indices(making sure the semantics of the onnx.gather_nd are
|
|
// preserved), perform torch.gather operation, later unflatten the
|
|
// gather result to match onnx.gather_nd output. For example, assuming
|
|
// indices is of shape (4, 5, 3, 2), data is (4, 10, 11, 7, 4) and
|
|
// batch_dims(`b`)=1. Firstly, modify indices to 1-D indexing as the
|
|
// torch.gather op supports only single dimensional indexing. (this
|
|
// algorithm would have been simpler if we can get a torch op that
|
|
// supports indexing at multiple dimensions simultaneously). 1-D indexed
|
|
// indices will be of shape (4, 5, 3, 1), now materialize it to
|
|
// `r-b-indices_shape[-1]` dimension of data i.e. reshaping it to the
|
|
// shape (4, 5, 3, 1, 1). Next step is to flatten+expand the indices and
|
|
// flatten the data to (4, 15, 7, 4) and (4, 110, 7, 4) shapes
|
|
// respectively and then perform the torch.gather operation. Post the
|
|
// gather operation, unflatten the indices dimensions of result to (4,
|
|
// 5, 3, 7, 4) which is our required result.
|
|
|
|
// step 4. Convert indices_shape[-1] dimensional indexing to 1D
|
|
// indexing.
|
|
Value sliceDim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(indicesRank - 1));
|
|
SmallVector<int64_t> indicesSliceShape(indicesShapeMinusOne);
|
|
indicesSliceShape.push_back(1);
|
|
auto indicesSliceTy = rewriter.getType<Torch::ValueTensorType>(
|
|
indicesSliceShape, indicesTy.getOptionalDtype());
|
|
|
|
Value start = constZero;
|
|
Value updatedIndices;
|
|
for (int64_t i = 0; i < indicesLastDim; ++i) {
|
|
Value end = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i + 1));
|
|
Value indicesSlice = rewriter.create<Torch::AtenSliceTensorOp>(
|
|
loc, indicesSliceTy, indices, sliceDim, start, end,
|
|
/*step=*/constOne);
|
|
start = end;
|
|
// Apply bounds checking on the indices slice.
|
|
auto boolTy = rewriter.getType<Torch::ValueTensorType>(
|
|
indicesSliceShape, rewriter.getI1Type());
|
|
Value lt = rewriter.create<Torch::AtenLtScalarOp>(
|
|
loc, boolTy, indicesSlice, constZero);
|
|
Value add = rewriter.create<Torch::AtenAddScalarOp>(
|
|
loc, indicesSliceTy, indicesSlice, dataDims[batchDimCount + i],
|
|
/*alpha=*/constOne);
|
|
indicesSlice = rewriter.create<Torch::AtenWhereSelfOp>(
|
|
loc, indicesSliceTy, lt, add, indicesSlice);
|
|
if (i == 0) {
|
|
updatedIndices = indicesSlice;
|
|
continue;
|
|
}
|
|
updatedIndices = rewriter.create<Torch::AtenAddTensorOp>(
|
|
loc, indicesSliceTy, indicesSlice, updatedIndices,
|
|
dataDims[batchDimCount + i]);
|
|
}
|
|
|
|
// step 5. Compute all the required result types here.
|
|
SmallVector<int64_t> reshapeIndicesShape(indicesShapeMinusOne);
|
|
SmallVector<Value> reshapeIndicesDims(indicesDimsMinusOne);
|
|
// Determine the collapsed dim size of indices(index_shape[-1] is not
|
|
// part of collapsing as we already removed it by 1-D indexing).
|
|
SmallVector<int64_t> flattenIndicesShape(batchShape);
|
|
auto indicesCt = 1;
|
|
for (int64_t i = batchDimCount; i < indicesRank - 1; ++i) {
|
|
if (indicesShape[i] == Torch::kUnknownSize) {
|
|
indicesCt = Torch::kUnknownSize;
|
|
break;
|
|
}
|
|
indicesCt *= indicesShape[i];
|
|
}
|
|
flattenIndicesShape.push_back(indicesCt);
|
|
// Determine the collapsed dim size of data.
|
|
SmallVector<int64_t> flattenDataShape(batchShape);
|
|
auto dataCt = 1;
|
|
for (int64_t i = 0; i < indicesLastDim; ++i) {
|
|
int64_t sz = dataShape[i + batchDimCount];
|
|
if (sz == Torch::kUnknownSize) {
|
|
dataCt = Torch::kUnknownSize;
|
|
break;
|
|
}
|
|
dataCt *= sz;
|
|
}
|
|
flattenDataShape.push_back(dataCt);
|
|
// Compute the shape of expand op.
|
|
SmallVector<Value> expandIndicesDims(batchDims);
|
|
expandIndicesDims.push_back(indicesFlattenDim);
|
|
SmallVector<int64_t> expandIndicesShape(batchShape);
|
|
expandIndicesShape.push_back(indicesCt);
|
|
// Append `r-b-indices_shape[-1]` unit or data dims appropriately to all
|
|
// result types.
|
|
for (int64_t i = batchDimCount + indicesLastDim; i < dataRank; ++i) {
|
|
reshapeIndicesShape.push_back(1);
|
|
flattenIndicesShape.push_back(1);
|
|
flattenDataShape.push_back(dataShape[i]);
|
|
expandIndicesShape.push_back(dataShape[i]);
|
|
reshapeIndicesDims.push_back(constOne);
|
|
expandIndicesDims.push_back(dataDims[i]);
|
|
}
|
|
|
|
// step 6. Reshape 1-D indexed indices to match the rank of flattened
|
|
// data by inserting unit dimensions.
|
|
auto intListTy = rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>());
|
|
Value reshapeIndicesSizeList =
|
|
rewriter.create<Torch::PrimListConstructOp>(loc, intListTy,
|
|
reshapeIndicesDims);
|
|
auto reshapeIndicesTy = rewriter.getType<Torch::ValueTensorType>(
|
|
reshapeIndicesShape, indicesTy.getOptionalDtype());
|
|
Value reshapedIndices = rewriter.create<Torch::AtenViewOp>(
|
|
loc, reshapeIndicesTy, updatedIndices, reshapeIndicesSizeList);
|
|
|
|
// step 7. Flatten `q-b-1` dimensions of the indices.
|
|
auto flattenIndicesTy = rewriter.getType<Torch::ValueTensorType>(
|
|
flattenIndicesShape, indicesTy.getOptionalDtype());
|
|
Value batchDimCountVal = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(batchDimCount));
|
|
Value flattenedIndices = reshapedIndices;
|
|
if (indicesRank == 1) {
|
|
flattenedIndices = rewriter.create<Torch::AtenUnsqueezeOp>(
|
|
loc, flattenIndicesTy, reshapedIndices, constZero);
|
|
} else if (indicesRank > 1) {
|
|
Value endDim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(indicesRank - 2));
|
|
flattenedIndices = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
|
|
loc, flattenIndicesTy, reshapedIndices, batchDimCountVal, endDim);
|
|
}
|
|
|
|
// step 8. Expand `r-b-indices_shape[-1]` dims of flattened indices.
|
|
auto expandIndicesTy = rewriter.getType<Torch::ValueTensorType>(
|
|
expandIndicesShape, indicesTy.getOptionalDtype());
|
|
Value expandIndicesSizeList =
|
|
rewriter.create<Torch::PrimListConstructOp>(loc, intListTy,
|
|
expandIndicesDims);
|
|
Value constFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
loc, rewriter.getType<Torch::BoolType>(),
|
|
rewriter.getBoolAttr(false));
|
|
Value expandedIndices = rewriter.create<Torch::AtenExpandOp>(
|
|
loc, expandIndicesTy, flattenedIndices, expandIndicesSizeList,
|
|
/*implicit=*/constFalse);
|
|
|
|
// step 9. Flatten indices_shape[-1] dimensions of data.
|
|
auto flattenDataTy = rewriter.getType<Torch::ValueTensorType>(
|
|
flattenDataShape, dataTy.getOptionalDtype());
|
|
Value endDim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc,
|
|
rewriter.getI64IntegerAttr(batchDimCount + indicesLastDim - 1));
|
|
Value flattenedData = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
|
|
loc, flattenDataTy, data, batchDimCountVal, endDim);
|
|
|
|
// step 10. Now we have flattenedData and expandedIndices of same rank
|
|
// to perform gather operation.
|
|
auto gatherTy = rewriter.getType<Torch::ValueTensorType>(
|
|
expandIndicesShape, dataTy.getOptionalDtype());
|
|
Value gather = rewriter.create<Torch::AtenGatherOp>(
|
|
loc, gatherTy, flattenedData, batchDimCountVal, expandedIndices,
|
|
/*sparseGrad=*/constFalse);
|
|
|
|
// step 11. Unflatten the collapsed indices dims of gather result.
|
|
if (indicesRank == 1) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenSqueezeDimOp>(
|
|
binder.op, resultType, gather, /*dim=*/constZero);
|
|
return success();
|
|
}
|
|
Value unflattenSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
loc, intListTy, unflattenIndicesDims);
|
|
rewriter.replaceOpWithNewOp<Torch::AtenUnflattenIntOp>(
|
|
binder.op, resultType, gather, batchDimCountVal, unflattenSizeList);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Gather", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value data, indices;
|
|
int64_t axis;
|
|
if (binder.tensorOperandAtIndex(data, 0) ||
|
|
binder.tensorOperandAtIndex(indices, 1) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64IntegerAttr(axis, "axis", 0))
|
|
return failure();
|
|
Location loc = binder.getLoc();
|
|
auto ctx = binder.op->getContext();
|
|
auto indicesTy = cast<Torch::ValueTensorType>(indices.getType());
|
|
auto dataTy = cast<Torch::ValueTensorType>(data.getType());
|
|
if (!dataTy || !dataTy.hasSizes() || !indicesTy.hasSizes())
|
|
return failure();
|
|
|
|
int64_t dataRank = dataTy.getSizes().size();
|
|
int64_t indicesRank = indicesTy.getSizes().size();
|
|
axis = axis < 0 ? axis + dataRank : axis;
|
|
|
|
Value index = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, Torch::IntType::get(ctx), rewriter.getI64IntegerAttr(axis));
|
|
|
|
// Apply bounds checking on the input:
|
|
auto intTy = rewriter.getType<Torch::IntType>();
|
|
auto boolTy = rewriter.getType<Torch::ValueTensorType>(
|
|
indicesTy.getSizes(), rewriter.getI1Type());
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, intTy, rewriter.getI64IntegerAttr(0));
|
|
Value one = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, intTy, rewriter.getI64IntegerAttr(1));
|
|
Value lt =
|
|
rewriter.create<Torch::AtenLtScalarOp>(loc, boolTy, indices, zero);
|
|
Value dim =
|
|
rewriter.create<Torch::AtenSizeIntOp>(loc, intTy, data, index);
|
|
Value add = rewriter.create<Torch::AtenAddScalarOp>(loc, indicesTy,
|
|
indices, dim, one);
|
|
indices = rewriter.create<Torch::AtenWhereSelfOp>(loc, indicesTy, lt,
|
|
add, indices);
|
|
|
|
auto intListTy = rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>());
|
|
|
|
llvm::SmallVector<Value> indicesDims;
|
|
for (int i = 0, s = indicesTy.getSizes().size(); i < s; ++i) {
|
|
Value k = rewriter.create<Torch::ConstantIntOp>(binder.getLoc(), i);
|
|
indicesDims.push_back(rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), indices, k));
|
|
}
|
|
|
|
Value indicesSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(), intListTy, indicesDims);
|
|
|
|
// Determine the collapsed dim size:
|
|
auto indicesCt = 1;
|
|
for (auto sz : indicesTy.getSizes()) {
|
|
if (sz == Torch::kUnknownSize) {
|
|
indicesCt = Torch::kUnknownSize;
|
|
break;
|
|
}
|
|
|
|
indicesCt *= sz;
|
|
}
|
|
|
|
auto flattenTy = rewriter.getType<Torch::ValueTensorType>(
|
|
SmallVector<int64_t>{indicesCt}, indicesTy.getOptionalDtype());
|
|
|
|
if (indicesRank == 0) {
|
|
indices = rewriter.create<Torch::AtenUnsqueezeOp>(
|
|
binder.getLoc(), flattenTy, indices, zero);
|
|
} else if (indicesRank > 1) {
|
|
Value rank = rewriter.create<Torch::AtenDimOp>(loc, intTy, indices);
|
|
Value end = rewriter.create<Torch::AtenSubIntOp>(loc, rank, one);
|
|
indices = rewriter.create<Torch::AtenFlattenUsingIntsOp>(
|
|
loc, flattenTy, indices, zero, end);
|
|
}
|
|
|
|
llvm::SmallVector<int64_t> gatherShape(dataTy.getSizes());
|
|
gatherShape[axis] = indicesCt;
|
|
auto gatherTy = rewriter.getType<Torch::ValueTensorType>(
|
|
gatherShape, dataTy.getOptionalDtype());
|
|
Value gather = rewriter.create<Torch::AtenIndexSelectOp>(
|
|
loc, gatherTy, data, index, indices);
|
|
|
|
if (indicesRank == 1) {
|
|
rewriter.replaceOp(binder.op, gather);
|
|
return success();
|
|
}
|
|
|
|
if (indicesRank > 1) {
|
|
gather = rewriter.replaceOpWithNewOp<Torch::AtenUnflattenIntOp>(
|
|
binder.op, resultType, gather, index, indicesSizeList);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenSqueezeOp>(binder.op, resultType,
|
|
gather);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"GatherElements", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value data, indices;
|
|
int64_t axis;
|
|
if (binder.tensorOperandAtIndex(data, 0) ||
|
|
binder.tensorOperandAtIndex(indices, 1) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64IntegerAttr(axis, "axis", 0))
|
|
return failure();
|
|
Value constAxis = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis));
|
|
|
|
auto indicesTy = cast<Torch::ValueTensorType>(indices.getType());
|
|
Value constZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value constOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value axisSize = rewriter.create<Torch::AtenSizeIntOp>(binder.getLoc(),
|
|
data, constAxis);
|
|
Value indicesAdd = rewriter.create<Torch::AtenAddScalarOp>(
|
|
binder.getLoc(), indicesTy, indices, axisSize, constOne);
|
|
|
|
auto boolTy = rewriter.getType<Torch::ValueTensorType>(
|
|
indicesTy.getSizes(), rewriter.getI1Type());
|
|
Value lt = rewriter.create<Torch::AtenLtScalarOp>(
|
|
binder.getLoc(), boolTy, indices, constZero);
|
|
indices = rewriter.create<Torch::AtenWhereSelfOp>(
|
|
binder.getLoc(), indicesTy, lt, indicesAdd, indices);
|
|
|
|
Value sparseGrad = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::BoolType>(),
|
|
rewriter.getBoolAttr(false));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenGatherOp>(
|
|
binder.op, resultType, data, constAxis, indices, sparseGrad);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Gemm", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value a, b, c;
|
|
float alpha, beta;
|
|
int64_t transA, transB;
|
|
if (binder.tensorOperandAtIndex(a, 0) ||
|
|
binder.tensorOperandAtIndex(b, 1) ||
|
|
binder.s64IntegerAttr(transA, "transA", 0) ||
|
|
binder.s64IntegerAttr(transB, "transB", 0) ||
|
|
binder.f32FloatAttr(alpha, "alpha", 1.0f) ||
|
|
binder.f32FloatAttr(beta, "beta", 1.0f) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0));
|
|
Value one = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
|
|
|
|
auto transpose = [&](Value m) -> Value {
|
|
auto tty = cast<Torch::ValueTensorType>(m.getType());
|
|
std::optional<ArrayRef<int64_t>> shape = tty.getOptionalSizes();
|
|
llvm::SmallVector<int64_t> newShape;
|
|
if (shape.has_value()) {
|
|
newShape.append(shape.value().begin(), shape.value().end());
|
|
std::reverse(newShape.begin(), newShape.end());
|
|
shape = newShape;
|
|
}
|
|
auto oty = Torch::ValueTensorType::get(tty.getContext(), shape,
|
|
tty.getOptionalDtype());
|
|
return rewriter.create<Torch::AtenTransposeIntOp>(binder.getLoc(),
|
|
oty, m, zero, one);
|
|
};
|
|
|
|
if (transA) {
|
|
a = transpose(a);
|
|
}
|
|
|
|
if (transB) {
|
|
b = transpose(b);
|
|
}
|
|
|
|
if (binder.getNumOperands() == 2) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMmOp>(binder.op, resultType, a,
|
|
b);
|
|
return success();
|
|
}
|
|
|
|
if (binder.tensorOperandAtIndex(c, 2))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Expected either 2 or 3 inputs");
|
|
|
|
Value mm =
|
|
rewriter.create<Torch::AtenMmOp>(binder.getLoc(), resultType, a, b);
|
|
if (alpha == 1.0 && beta == 1.0) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
|
|
binder.op, resultType, mm, c, one);
|
|
return success();
|
|
}
|
|
|
|
if (alpha != 1.0 && beta != 1.0) {
|
|
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(alpha));
|
|
mm = rewriter.create<Torch::AtenMulScalarOp>(
|
|
binder.getLoc(), resultType, mm, constAlpha);
|
|
alpha = 1.0;
|
|
}
|
|
|
|
if (alpha != 1.0) {
|
|
std::swap(alpha, beta);
|
|
std::swap(mm, c);
|
|
}
|
|
|
|
Value constBeta = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(beta));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAddTensorOp>(
|
|
binder.op, resultType, mm, c, constBeta);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"GlobalAveragePool", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto inputTensorType = cast<Torch::ValueTensorType>(operand.getType());
|
|
if (!inputTensorType || !inputTensorType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected input type having sizes");
|
|
}
|
|
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
|
|
unsigned inputRank = inputShape.size();
|
|
if (!resultType || !resultType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected result type having sizes");
|
|
}
|
|
ArrayRef<int64_t> resultShape = resultType.getSizes();
|
|
|
|
SmallVector<Value> cstKernel, cstPadding, cstStrides;
|
|
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
for (unsigned i = 2; i < inputRank; i++) {
|
|
if (inputShape[i] == Torch::kUnknownSize) {
|
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i));
|
|
Value inputDimSize = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), operand, dim);
|
|
cstKernel.push_back(inputDimSize);
|
|
} else {
|
|
int64_t kernelSize = inputShape[i] - resultShape[i] + 1;
|
|
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(kernelSize)));
|
|
}
|
|
cstPadding.push_back(cstZero);
|
|
cstStrides.push_back(cstOne);
|
|
}
|
|
Value kernelSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstKernel);
|
|
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstPadding);
|
|
Value stridesList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstStrides);
|
|
Value cstFalse =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
Value cstCeilMode = cstFalse;
|
|
Value cstCountIncludePad = cstFalse;
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
|
|
if (inputRank == 3) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool1dOp>(
|
|
binder.op, resultType, operand, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad);
|
|
return success();
|
|
} else if (inputRank == 4) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool2dOp>(
|
|
binder.op, resultType, operand, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad,
|
|
/*divisor_override=*/cstNone);
|
|
return success();
|
|
} else if (inputRank == 5) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenAvgPool3dOp>(
|
|
binder.op, resultType, operand, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad,
|
|
/*divisor_override=*/cstNone);
|
|
return success();
|
|
}
|
|
return failure();
|
|
});
|
|
patterns.onOp(
|
|
"GlobalMaxPool", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto inputTensorType = cast<Torch::ValueTensorType>(operand.getType());
|
|
if (!inputTensorType || !inputTensorType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected input type having sizes");
|
|
}
|
|
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
|
|
unsigned inputRank = inputShape.size();
|
|
if (!resultType || !resultType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected result type having sizes");
|
|
}
|
|
SmallVector<Value> cstKernel, cstPadding, cstStrides, cstDilations;
|
|
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
for (unsigned i = 2; i < inputRank; i++) {
|
|
if (inputShape[i] == Torch::kUnknownSize) {
|
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i));
|
|
Value inputDimSize = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), operand, dim);
|
|
cstKernel.push_back(inputDimSize);
|
|
} else {
|
|
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(inputShape[i])));
|
|
}
|
|
cstPadding.push_back(cstZero);
|
|
cstDilations.push_back(cstOne);
|
|
cstStrides.push_back(cstOne);
|
|
}
|
|
Value kernelSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstKernel);
|
|
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstPadding);
|
|
Value dilationsList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstDilations);
|
|
Value stridesList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstStrides);
|
|
Value cstCeilMode =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
|
|
if (inputRank == 3) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool1dOp>(
|
|
binder.op, resultType, operand, kernelSizeList, stridesList,
|
|
paddingList, dilationsList, cstCeilMode);
|
|
return success();
|
|
} else if (inputRank == 4) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool2dOp>(
|
|
binder.op, resultType, operand, kernelSizeList, stridesList,
|
|
paddingList, dilationsList, cstCeilMode);
|
|
return success();
|
|
} else if (inputRank == 5) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxPool3dOp>(
|
|
binder.op, resultType, operand, kernelSizeList, stridesList,
|
|
paddingList, dilationsList, cstCeilMode);
|
|
return success();
|
|
}
|
|
return failure();
|
|
});
|
|
patterns.onOp(
|
|
"GlobalLpPool", 2,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
int64_t p;
|
|
if (binder.tensorOperand(operand) || binder.s64IntegerAttr(p, "p", 2) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto inputTensorType = cast<Torch::ValueTensorType>(operand.getType());
|
|
if (!inputTensorType || !inputTensorType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected input type having sizes");
|
|
}
|
|
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
|
|
unsigned inputRank = inputShape.size();
|
|
// only handle 2D, 3D and 5D pooling cases
|
|
if (inputRank > 5 or inputRank < 3) {
|
|
return failure();
|
|
}
|
|
if (!resultType || !resultType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected result type having sizes");
|
|
}
|
|
ArrayRef<int64_t> resultShape = resultType.getSizes();
|
|
|
|
SmallVector<Value> cstKernel, cstPadding, cstStrides;
|
|
Value cstZero = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0));
|
|
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value numElements = cstOne;
|
|
for (unsigned i = 2; i < inputRank; i++) {
|
|
if (inputShape[i] == Torch::kUnknownSize) {
|
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i));
|
|
Value inputDimSize = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), operand, dim);
|
|
cstKernel.push_back(inputDimSize);
|
|
} else {
|
|
int64_t kernelSize = inputShape[i] - resultShape[i] + 1;
|
|
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(kernelSize)));
|
|
}
|
|
numElements = rewriter.create<Torch::AtenMulOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
cstKernel.back(), numElements);
|
|
cstPadding.push_back(cstZero);
|
|
cstStrides.push_back(cstOne);
|
|
}
|
|
Value kernelSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstKernel);
|
|
Value paddingList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstPadding);
|
|
Value stridesList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstStrides);
|
|
Value cstFalse =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
Value cstCeilMode = cstFalse;
|
|
Value cstCountIncludePad = cstFalse;
|
|
Value abs = rewriter.create<Torch::AtenAbsOp>(binder.getLoc(),
|
|
inputTensorType, operand);
|
|
Value pv = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), p));
|
|
Value pow = rewriter.create<Torch::AtenPowTensorScalarOp>(
|
|
binder.getLoc(), inputTensorType, abs, pv);
|
|
Value avgPool;
|
|
if (inputRank == 3) {
|
|
avgPool = rewriter.create<Torch::AtenAvgPool1dOp>(
|
|
binder.getLoc(), resultType, pow, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad);
|
|
avgPool = rewriter.create<Torch::AtenMulScalarOp>(
|
|
binder.getLoc(), resultType, avgPool, numElements);
|
|
} else if (inputRank == 4) {
|
|
avgPool = rewriter.create<Torch::AtenAvgPool2dOp>(
|
|
binder.getLoc(), resultType, pow, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad,
|
|
/*divisor_override=*/cstOne);
|
|
} else { // inputRank == 5
|
|
avgPool = rewriter.create<Torch::AtenAvgPool3dOp>(
|
|
binder.getLoc(), resultType, pow, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad,
|
|
/*divisor_override=*/cstOne);
|
|
}
|
|
Value invP = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(double{1.0 / p}));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenPowTensorScalarOp>(
|
|
binder.op, resultType, avgPool, invP);
|
|
return success();
|
|
});
|
|
|
|
patterns.onOp(
|
|
"LpPool", 18, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
std::string autoPad;
|
|
if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET"))
|
|
return failure();
|
|
if (autoPad != "NOTSET") {
|
|
// TODO: Add support for `auto_pad` != "NOTSET"
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unsupported conversion: auto_pad != NOTSET");
|
|
}
|
|
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
int64_t ceilMode, p;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.s64IntegerAttr(ceilMode, "ceil_mode", 0) ||
|
|
binder.s64IntegerAttr(p, "p", 2) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
// Determine the rank of input tensor.
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(operand);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: unranked tensor");
|
|
unsigned rank = *maybeRank;
|
|
// only 1D, 2D and 3D LpPool is supported.
|
|
if (rank > 5 or rank < 3) {
|
|
return failure();
|
|
}
|
|
|
|
SmallVector<int64_t> kernel, padding, strides, dilations;
|
|
SmallVector<int64_t> defaultPadding(2 * (rank - 2), 0);
|
|
if (binder.s64IntegerArrayAttr(kernel, "kernel_shape", {}) ||
|
|
binder.s64IntegerArrayAttr(padding, "pads", defaultPadding) ||
|
|
binder.s64IntegerArrayAttr(
|
|
strides, "strides", llvm::SmallVector<int64_t>(rank - 2, 1)) ||
|
|
binder.s64IntegerArrayAttr(dilations, "dilations", {})) {
|
|
return failure();
|
|
}
|
|
if (kernel.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "kernel list size does not match the number of axes");
|
|
}
|
|
if (padding.size() != 2 * (rank - 2)) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op,
|
|
"padding list size does not match twice the number of axes");
|
|
}
|
|
if (strides.size() != rank - 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "strides list size does not match the number of axes");
|
|
}
|
|
if (dilations.size() > 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "dilation is not supported by torch.aten.avgpool op "
|
|
"and therefore it is not supported for LpPool.");
|
|
}
|
|
|
|
SmallVector<Value> cstKernel, cstPadding, cstStrides;
|
|
Value cstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
Value numElements = cstOne;
|
|
for (int64_t i : kernel) {
|
|
cstKernel.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(i)));
|
|
numElements = rewriter.create<Torch::AtenMulOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
cstKernel.back(), numElements);
|
|
}
|
|
Value kernelSizeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
cstKernel);
|
|
Value paddingList = createConstantIntList(binder, rewriter, padding);
|
|
Value stridesList = createConstantIntList(binder, rewriter, strides);
|
|
Value cstCeilMode =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), ceilMode);
|
|
// onnx lp pool doesn't have countIncludePad attribute but set it to
|
|
// true so that in 1D case numElements is correctly undoes divison. For
|
|
// 2D/3D case, division is avoided by divison_override.
|
|
Value cstCountIncludePad =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
|
|
Value pv = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), p));
|
|
auto inputTensorType = cast<Torch::ValueTensorType>(operand.getType());
|
|
Value abs = rewriter.create<Torch::AtenAbsOp>(binder.getLoc(),
|
|
inputTensorType, operand);
|
|
Value pow = rewriter.create<Torch::AtenPowTensorScalarOp>(
|
|
binder.getLoc(), inputTensorType, abs, pv);
|
|
Value avgPool;
|
|
if (rank == 3) {
|
|
avgPool = rewriter.create<Torch::AtenAvgPool1dOp>(
|
|
binder.getLoc(), resultType, pow, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad);
|
|
avgPool = rewriter.create<Torch::AtenMulScalarOp>(
|
|
binder.getLoc(), resultType, avgPool, numElements);
|
|
} else if (rank == 4) {
|
|
avgPool = rewriter.create<Torch::AtenAvgPool2dOp>(
|
|
binder.getLoc(), resultType, pow, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad,
|
|
/*divisor_override=*/cstOne);
|
|
} else { // rank == 5
|
|
avgPool = rewriter.create<Torch::AtenAvgPool3dOp>(
|
|
binder.getLoc(), resultType, pow, kernelSizeList, stridesList,
|
|
paddingList, cstCeilMode, cstCountIncludePad,
|
|
/*divisor_override=*/cstOne);
|
|
}
|
|
Value invP = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(double{1.0 / p}));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenPowTensorScalarOp>(
|
|
binder.op, resultType, avgPool, invP);
|
|
return success();
|
|
});
|
|
|
|
patterns.onOp(
|
|
"LayerNormalization", 17,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType yType, meanType, invStdDevType;
|
|
Value x, scale, b;
|
|
int64_t axis, stashType;
|
|
float epsilon;
|
|
if (binder.tensorOperandAtIndex(x, 0) ||
|
|
binder.tensorOperandAtIndex(scale, 1) ||
|
|
binder.tensorOperandAtIndex(b, 2) ||
|
|
binder.tensorResultTypeAtIndex(yType, 0) ||
|
|
binder.s64IntegerAttr(axis, "axis", -1) ||
|
|
binder.f32FloatAttr(epsilon, "epsilon", 0.00001f) ||
|
|
binder.s64IntegerAttr(stashType, "stash_type", 1))
|
|
return failure();
|
|
|
|
// Since the support for `stash_type` arg does not exist in
|
|
// the torch op so we just check for the stash_type to be same
|
|
// as the input dtype since that won't require us to do any
|
|
// input type conversion and hence can be supported.
|
|
auto xType = cast<Torch::ValueTensorType>(x.getType());
|
|
std::optional<int64_t> stashTypeIntTorch =
|
|
onnxDtypeIntToTorchDtypeInt(stashType);
|
|
if (!stashTypeIntTorch.has_value())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented support for the given stash_type");
|
|
|
|
FailureOr<Type> stashDtype = Torch::getTypeForScalarType(
|
|
binder.op->getContext(),
|
|
(torch_upstream::ScalarType)stashTypeIntTorch.value());
|
|
if (failed(stashDtype))
|
|
return failure();
|
|
if (*stashDtype != xType.getOptionalDtype())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented: stash_type should be same "
|
|
"as the input dtype");
|
|
|
|
Value constEpsilon = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(epsilon));
|
|
unsigned rank = 1;
|
|
if (std::optional<unsigned> maybeRank = Torch::getTensorRank(x))
|
|
rank = *maybeRank;
|
|
SmallVector<Value> normalized;
|
|
axis = Torch::toPositiveDim(axis, rank);
|
|
if (!xType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Expected input (X) to have sizes");
|
|
}
|
|
ArrayRef<int64_t> xShape = xType.getSizes();
|
|
for (int64_t n = axis; n < rank; n++) {
|
|
normalized.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(xShape[n])));
|
|
}
|
|
Value normalized_shape = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
Torch::ListType::get(Torch::IntType::get(binder.op->getContext())),
|
|
normalized);
|
|
|
|
int64_t numResults = binder.op->getNumResults();
|
|
if (numResults == 1) {
|
|
SmallVector<int64_t> reducedShape(rank, 1);
|
|
for (int64_t i = 0; i < axis; i++)
|
|
reducedShape[i] = xShape[i];
|
|
auto reducedType = xType.getWithSizesAndDtype(
|
|
reducedShape, xType.getOptionalDtype());
|
|
Value y = rewriter
|
|
.create<Torch::AtenNativeLayerNormOp>(
|
|
binder.getLoc(), yType, /*meanType=*/reducedType,
|
|
/*invStdDevType=*/reducedType, x, normalized_shape,
|
|
scale, b, constEpsilon)
|
|
.getResult0();
|
|
rewriter.replaceOp(binder.op, y);
|
|
return success();
|
|
}
|
|
if (numResults == 3) {
|
|
if (binder.tensorResultTypeAtIndex(meanType, 1) ||
|
|
binder.tensorResultTypeAtIndex(invStdDevType, 2))
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<Torch::AtenNativeLayerNormOp>(
|
|
binder.op, yType, meanType, invStdDevType, x, normalized_shape,
|
|
scale, b, constEpsilon);
|
|
return success();
|
|
}
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Unimplemented: expected either 1 or 3 results");
|
|
});
|
|
patterns.onOp("LeakyRelu", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
float alpha;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.f32FloatAttr(alpha, "alpha", 0.01f))
|
|
return failure();
|
|
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(alpha));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenLeakyReluOp>(
|
|
binder.op, resultType, operand, constAlpha);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"LRN", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value operand;
|
|
int64_t size;
|
|
float alpha, beta, bias;
|
|
if (binder.tensorOperand(operand) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64IntegerAttr(size, "size", 2) ||
|
|
binder.f32FloatAttr(alpha, "alpha", 0.0001f) ||
|
|
binder.f32FloatAttr(beta, "beta", 0.75f) ||
|
|
binder.f32FloatAttr(bias, "bias", 1.0f))
|
|
return failure();
|
|
Type dtype = resultType.getOptionalDtype();
|
|
Value constAlpha = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(alpha));
|
|
Value constBeta = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(beta));
|
|
Value constBias = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(bias));
|
|
// Please refer to the operator description
|
|
// for more info on the lowering
|
|
// https://onnx.ai/onnx/operators/onnx__LRN.html
|
|
|
|
// squared = operand^2
|
|
Location loc = binder.getLoc();
|
|
Torch::ValueTensorType inTy =
|
|
cast<Torch::ValueTensorType>(operand.getType());
|
|
Value sqOperand = rewriter.create<Torch::AtenMulTensorOp>(
|
|
loc, inTy, operand, operand);
|
|
// view it as n x 1 x c x d0 x d..
|
|
if (!inTy.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Expected input to have sizes");
|
|
}
|
|
ArrayRef<int64_t> inTyShape = inTy.getSizes();
|
|
if (inTyShape.size() < 3) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Unsupported: the input dimensions should be >= 3");
|
|
}
|
|
if (inTyShape[1] == Torch::kUnknownSize) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "Unsupported: the second dimension size must be "
|
|
"statically known");
|
|
}
|
|
SmallVector<int64_t, 5> viewShapeInt{inTyShape[0], 1, inTyShape[1],
|
|
inTyShape[2], Torch::kUnknownSize};
|
|
Torch::ValueTensorType reshapeType =
|
|
rewriter.getType<Torch::ValueTensorType>(viewShapeInt, dtype);
|
|
Value viewShapeListVal =
|
|
createConstantIntList(binder, rewriter, viewShapeInt);
|
|
auto view = rewriter.create<Torch::AtenViewOp>(
|
|
loc, reshapeType, sqOperand, viewShapeListVal);
|
|
// padding
|
|
int64_t highPad = (size - 1) / 2;
|
|
int64_t lowPad = (size - 1) - highPad;
|
|
SmallVector<int64_t> paddingInt{0, 0, 0, 0, lowPad, highPad};
|
|
auto constPadVal = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr(0.0));
|
|
Value paddingListVal =
|
|
createConstantIntList(binder, rewriter, paddingInt);
|
|
SmallVector<int64_t, 5> paddedShapeInt = viewShapeInt;
|
|
paddedShapeInt[2] += size - 1;
|
|
Torch::ValueTensorType paddedType =
|
|
rewriter.getType<Torch::ValueTensorType>(paddedShapeInt, dtype);
|
|
auto padded = rewriter.create<Torch::AtenConstantPadNdOp>(
|
|
loc, paddedType, view, paddingListVal, constPadVal);
|
|
// avg_pool3d
|
|
SmallVector<int64_t, 3> kernelSize{size, 1, 1};
|
|
Value kernelSizeList =
|
|
createConstantIntList(binder, rewriter, kernelSize);
|
|
SmallVector<int64_t, 3> strides{1, 1, 1};
|
|
Value stridesList = createConstantIntList(binder, rewriter, strides);
|
|
SmallVector<int64_t, 3> padding{0, 0, 0};
|
|
Value paddingList = createConstantIntList(binder, rewriter, padding);
|
|
auto cstCeilMode =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), false);
|
|
auto cstCountIncludeMode =
|
|
rewriter.create<Torch::ConstantBoolOp>(binder.getLoc(), true);
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
// Output of pooling is same reshape(view) type because
|
|
// of the padding done on the dimensions being pooled.
|
|
auto pool = rewriter.create<Torch::AtenAvgPool3dOp>(
|
|
loc, reshapeType, padded, kernelSizeList, stridesList, paddingList,
|
|
cstCeilMode, cstCountIncludeMode, /*divisor_override=*/cstNone);
|
|
// squeeze
|
|
auto one = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
SmallVector<int64_t, 5> squeezeShapeInt{
|
|
viewShapeInt[0], viewShapeInt[2], viewShapeInt[3], viewShapeInt[4]};
|
|
Torch::ValueTensorType squeezeType =
|
|
rewriter.getType<Torch::ValueTensorType>(squeezeShapeInt, dtype);
|
|
auto squeeze = rewriter.create<Torch::AtenSqueezeDimOp>(
|
|
loc, squeezeType, pool, one);
|
|
// view as input Type
|
|
Value intTyShapeList =
|
|
createConstantIntList(binder, rewriter, inTyShape);
|
|
auto viewAsInput = rewriter.create<Torch::AtenViewOp>(
|
|
loc, inTy, squeeze, intTyShapeList);
|
|
// mul + add + pow + div
|
|
auto mul = rewriter.create<Torch::AtenMulScalarOp>(
|
|
loc, resultType, viewAsInput, constAlpha);
|
|
auto add = rewriter.create<Torch::AtenAddScalarOp>(loc, resultType, mul,
|
|
constBias, one);
|
|
auto pow = rewriter.create<Torch::AtenPowTensorScalarOp>(
|
|
loc, resultType, add, constBeta);
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenDivTensorOp>(
|
|
binder.op, resultType, operand, pow);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Pad", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value data, pads, axes;
|
|
std::string mode;
|
|
|
|
// TODO: The `axes` parameter is not supported yet.
|
|
if (!binder.tensorOperandAtIndex(axes, 3)) {
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "The axes parameter is not supported yet");
|
|
}
|
|
if (binder.tensorOperandAtIndex(data, 0) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.customOpNameStringAttr(mode, "mode", "constant"))
|
|
return failure();
|
|
bool cstMode = (mode == "constant");
|
|
|
|
// get input rank
|
|
auto dataOpTy = cast<Torch::ValueTensorType>(data.getType());
|
|
TensorType dataTensor = dataOpTy.toBuiltinTensor();
|
|
if (!dataTensor || !dataTensor.hasRank())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "pad length unknown and data operand unranked");
|
|
int64_t dataRank = dataTensor.getRank();
|
|
int64_t padsSize = 2 * dataRank;
|
|
|
|
Location loc = binder.getLoc();
|
|
|
|
// get pads (earlier versions use an attribute, newer versions use a
|
|
// tensor input)
|
|
SmallVector<Value> padsTensorValue;
|
|
if (binder.tensorOperandAtIndex(pads, 1)) {
|
|
SmallVector<int64_t> defaultPads(2 * dataRank, 0);
|
|
SmallVector<int64_t> padInts;
|
|
if (binder.s64IntegerArrayAttr(padInts, "pads", defaultPads))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"pads binder failure");
|
|
// opset_version 1 uses the attribute name "paddings"
|
|
if (padInts == defaultPads) {
|
|
SmallVector<int64_t> paddingsInts;
|
|
if (binder.s64IntegerArrayAttr(paddingsInts, "paddings",
|
|
defaultPads))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"paddings binder failure");
|
|
padInts = paddingsInts;
|
|
}
|
|
for (auto p : padInts)
|
|
padsTensorValue.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(p)));
|
|
} else {
|
|
// Get pads shape and rank. The pads tensor is expected to be 1-D
|
|
// tensor.
|
|
auto padsTensorType = cast<Torch::ValueTensorType>(pads.getType());
|
|
if (!padsTensorType || !padsTensorType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Expect non empty pad tensor");
|
|
}
|
|
ArrayRef<int64_t> padsShape = padsTensorType.getSizes();
|
|
int64_t padsRank = padsShape.size();
|
|
if (padsRank != 1)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"expect 1-d pad tensor");
|
|
if (padsShape[0] != Torch::kUnknownSize) {
|
|
// As per onnx.Pad documentation, padSize = 2*num_data_axes
|
|
// (if axes param not passed). Need to be updated when adding
|
|
// support for `axes` param.
|
|
padsSize = padsShape[0];
|
|
}
|
|
|
|
// Extract all the values of 1-D pad tensor and create a list of all
|
|
// these values as torch.pad op expects pad list.
|
|
Value constZero = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
SmallVector<int64_t> emptyShape;
|
|
Type padsElemType = Torch::ValueTensorType::get(
|
|
padsTensorType.getContext(), emptyShape,
|
|
padsTensorType.getOptionalDtype());
|
|
for (uint32_t i = 0; i < padsSize; ++i) {
|
|
Value index = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
auto select = rewriter.create<Torch::AtenSelectIntOp>(
|
|
loc, padsElemType, pads, constZero, index);
|
|
Value selectInt = rewriter.create<Torch::AtenItemOp>(
|
|
loc, rewriter.getType<Torch::IntType>(), select);
|
|
padsTensorValue.push_back(selectInt);
|
|
}
|
|
}
|
|
|
|
Value constantValue;
|
|
if (binder.getNumOperands() >= 3 && cstMode) {
|
|
if (!binder.tensorOperandAtIndex(constantValue, 2)) {
|
|
auto constTy =
|
|
dyn_cast<Torch::BaseTensorType>(constantValue.getType());
|
|
if (!constTy || !constTy.hasDtype())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "constant ty is unsupport type");
|
|
|
|
Type scalarTy = rewriter.getType<Torch::IntType>();
|
|
if (isa<FloatType>(constTy.getDtype()))
|
|
scalarTy = rewriter.getType<Torch::FloatType>();
|
|
constantValue = rewriter.create<Torch::AtenItemOp>(loc, scalarTy,
|
|
constantValue);
|
|
}
|
|
}
|
|
|
|
if (!constantValue && cstMode) {
|
|
auto dataTensorType = cast<Torch::ValueTensorType>(data.getType());
|
|
if (isa<IntegerType>(dataTensorType.getDtype()))
|
|
constantValue = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
// Earlier versions used a FLOAT attribute to store the constant
|
|
// value. The following will pick up on any non-default value attr if
|
|
// provided.
|
|
float constantFloat;
|
|
if (isa<FloatType>(dataTensorType.getDtype()) &&
|
|
!binder.f32FloatAttr(constantFloat, "value", 0.0f))
|
|
constantValue = rewriter.create<Torch::ConstantFloatOp>(
|
|
loc, rewriter.getF64FloatAttr(constantFloat));
|
|
|
|
if (!constantValue)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "expected integer or float data tensor");
|
|
}
|
|
|
|
// for modes other than "constant" a value is not required
|
|
if (!cstMode)
|
|
constantValue = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
|
|
// The torch.pad op expects a different arrangement of padding pairs for
|
|
// each dimension as compared to the onnx.pad op. Rearrange the pad
|
|
// tensor as shown below:
|
|
//
|
|
// [x1_begin, x2_begin, ..., x1_end, x2_end,...] ->
|
|
// [xn_begin, xn_end, ...., x2_begin, x2_end, x1_begin, x1_end]
|
|
SmallVector<Value> padsRearrange;
|
|
for (uint32_t i = padsSize - 1; i >= padsSize / 2; i--) {
|
|
padsRearrange.emplace_back(padsTensorValue[i - padsSize / 2]);
|
|
padsRearrange.emplace_back(padsTensorValue[i]);
|
|
}
|
|
|
|
Value padsSizeList =
|
|
rewriter
|
|
.create<Torch::PrimListConstructOp>(
|
|
loc,
|
|
Torch::ListType::get(rewriter.getType<Torch::IntType>()),
|
|
padsRearrange)
|
|
.getResult();
|
|
|
|
// lowering to AtenConstantPadNdOp directly allows passing any torch
|
|
// scalar type for the value, whereas AtenPadOp takes an optional float
|
|
// type.
|
|
if (cstMode && !isa<Torch::NoneType>(constantValue.getType())) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenConstantPadNdOp>(
|
|
binder.op, resultType, data, padsSizeList, constantValue);
|
|
return success();
|
|
}
|
|
|
|
// translate a few mismatching mode names ONNX -> Torch
|
|
mode = (mode == "edge") ? "replicate" : mode;
|
|
mode = (mode == "wrap") ? "circular" : mode;
|
|
|
|
Value modeVal = rewriter.create<Torch::ConstantStrOp>(
|
|
loc, rewriter.getStringAttr(mode));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenPadOp>(
|
|
binder.op, resultType, data, padsSizeList, modeVal, constantValue);
|
|
return success();
|
|
});
|
|
patterns.onOp("Pow", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value lhs, rhs;
|
|
if (binder.tensorOperands(lhs, rhs) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenPowTensorTensorOp>(
|
|
binder.op, resultType, lhs, rhs);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Identity", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value tensor;
|
|
if (binder.tensorOperand(tensor) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
rewriter.replaceOpWithNewOp<Torch::AtenCloneOp>(
|
|
binder.op, resultType, tensor, /*memory_format=*/noneVal);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Mean", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
if (binder.op->getNumOperands() == 1) {
|
|
Torch::ValueTensorType resultType;
|
|
Value x;
|
|
if (binder.tensorOperand(x) || binder.tensorResultType(resultType))
|
|
return failure();
|
|
rewriter.replaceOp(binder.op, x);
|
|
return success();
|
|
}
|
|
Torch::ValueTensorType resultType;
|
|
SmallVector<Value> valList;
|
|
int64_t numOperands = binder.op->getNumOperands();
|
|
Value numOperandsConstant = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), numOperands));
|
|
if (binder.tensorOperands(valList, numOperands) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
Value constOne = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1));
|
|
// Short circuit to binary add
|
|
Value curr = rewriter.create<Torch::AtenAddTensorOp>(
|
|
binder.getLoc(), resultType, valList[0], valList[1], constOne);
|
|
if (numOperands == 2) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenDivScalarOp>(
|
|
binder.op, resultType, curr, numOperandsConstant);
|
|
return success();
|
|
}
|
|
// When binder.op->getNumOperands() > 2
|
|
auto baseType = Torch::ValueTensorType::getWithLeastStaticInformation(
|
|
binder.op->getContext());
|
|
for (int i = 2; i < numOperands; i++) {
|
|
if (i == numOperands - 1) {
|
|
curr = rewriter.create<Torch::AtenAddTensorOp>(
|
|
binder.getLoc(), resultType, curr, valList[i], constOne);
|
|
} else {
|
|
curr = rewriter.create<Torch::AtenAddTensorOp>(
|
|
binder.getLoc(), baseType, curr, valList[i], constOne);
|
|
}
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenDivScalarOp>(
|
|
binder.op, resultType, curr, numOperandsConstant);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"IsInf", 10, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value tensor;
|
|
int64_t neg;
|
|
int64_t pos;
|
|
if (binder.tensorOperand(tensor) ||
|
|
binder.s64IntegerAttr(neg, "detect_negative", 1) ||
|
|
binder.s64IntegerAttr(pos, "detect_positive", 1) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
if (neg == 0) {
|
|
// replace all negative infs with 0
|
|
tensor = rewriter.create<Torch::AtenReluOp>(
|
|
binder.getLoc(),
|
|
dyn_cast<Torch::ValueTensorType>(tensor.getType()), tensor);
|
|
}
|
|
if (pos == 0) {
|
|
// first use neg op to flip positive inf to negative inf. Then relu to
|
|
// replace all positive infs with 0.
|
|
Value flip = rewriter.create<Torch::AtenNegOp>(
|
|
binder.getLoc(),
|
|
dyn_cast<Torch::ValueTensorType>(tensor.getType()), tensor);
|
|
tensor = rewriter.create<Torch::AtenReluOp>(
|
|
binder.getLoc(), dyn_cast<Torch::ValueTensorType>(flip.getType()),
|
|
flip);
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenIsinfOp>(binder.op, resultType,
|
|
tensor);
|
|
return success();
|
|
});
|
|
patterns.onOp("IsNaN", 9,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value tensor;
|
|
if (binder.tensorOperand(tensor) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenIsnanOp>(
|
|
binder.op, resultType, tensor);
|
|
return success();
|
|
});
|
|
patterns.onOp("PRelu", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value tensor;
|
|
Value slope;
|
|
if (binder.tensorOperands(tensor, slope) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenPreluOp>(
|
|
binder.op, resultType, tensor, slope);
|
|
return success();
|
|
});
|
|
patterns.onOp("Mod", 13,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value self, other;
|
|
int64_t fmod;
|
|
if (binder.tensorOperands(self, other) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64IntegerAttr(fmod, "fmod", 0)) {
|
|
return failure();
|
|
}
|
|
|
|
if (fmod) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenFmodTensorOp>(
|
|
binder.op, resultType, self, other);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenRemainderTensorOp>(
|
|
binder.op, resultType, self, other);
|
|
return success();
|
|
});
|
|
patterns.onOp("Mish", 18,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMishOp>(
|
|
binder.op, resultType, input);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"OneHot", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
llvm::SmallVector<Value> inputs;
|
|
Torch::ValueTensorType resultType;
|
|
if (binder.tensorOperandsList(inputs) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
if (inputs.size() != 3)
|
|
return rewriter.notifyMatchFailure(binder.op, "expected 3 operands");
|
|
|
|
int64_t axis;
|
|
if (binder.s64IntegerAttr(axis, "axis", -1))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"`axis` attr not found");
|
|
|
|
auto loc = binder.getLoc();
|
|
Value indices = inputs[0];
|
|
Value depth = inputs[1];
|
|
Value values = inputs[2];
|
|
|
|
auto indicesTy = cast<Torch::ValueTensorType>(indices.getType());
|
|
auto valuesTy = cast<Torch::ValueTensorType>(values.getType());
|
|
auto depthTy = cast<Torch::ValueTensorType>(depth.getType());
|
|
|
|
axis = axis < 0 ? axis + indicesTy.getSizes().size() + 1 : axis;
|
|
|
|
bool depthIsInt = isa<IntegerType>(depthTy.getDtype());
|
|
Type intTy = rewriter.getType<Torch::IntType>();
|
|
Type floatTy = rewriter.getType<Torch::FloatType>();
|
|
Type depthETy = depthIsInt ? intTy : floatTy;
|
|
depth = rewriter.create<Torch::AtenItemOp>(loc, depthETy, depth);
|
|
|
|
if (!depthIsInt)
|
|
depth = rewriter.create<Torch::AtenIntScalarOp>(
|
|
loc, rewriter.getType<Torch::IntType>(), depth);
|
|
|
|
Type boolTy = rewriter.getType<Torch::ValueTensorType>(
|
|
indicesTy.getSizes(), rewriter.getI1Type());
|
|
Value zero = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
Value one = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
Value lt =
|
|
rewriter.create<Torch::AtenLtScalarOp>(loc, boolTy, indices, zero);
|
|
Value add = rewriter.create<Torch::AtenAddScalarOp>(
|
|
loc, indicesTy, indices, depth, one);
|
|
indices = rewriter.create<Torch::AtenWhereSelfOp>(loc, indicesTy, lt,
|
|
add, indices);
|
|
|
|
auto selectTy = rewriter.getType<Torch::ValueTensorType>(
|
|
llvm::SmallVector<int64_t>{1}, valuesTy.getDtype());
|
|
|
|
bool valuesAreInt = isa<IntegerType>(valuesTy.getDtype());
|
|
Type valuesETy = valuesAreInt ? intTy : floatTy;
|
|
|
|
Value off = rewriter.create<Torch::AtenSelectIntOp>(loc, selectTy,
|
|
values, zero, zero);
|
|
off = rewriter.create<Torch::AtenItemOp>(loc, valuesETy, off);
|
|
|
|
Value on = rewriter.create<Torch::AtenSelectIntOp>(loc, selectTy,
|
|
values, zero, one);
|
|
on = rewriter.create<Torch::AtenItemOp>(loc, valuesETy, on);
|
|
|
|
auto i32Ty = rewriter.getIntegerType(32, true);
|
|
llvm::SmallVector<int64_t> onehotShape(indicesTy.getSizes());
|
|
onehotShape.push_back(Torch::kUnknownSize);
|
|
auto onehotTy =
|
|
rewriter.getType<Torch::ValueTensorType>(onehotShape, i32Ty);
|
|
|
|
Value onehot = rewriter.create<Torch::AtenOneHotOp>(
|
|
binder.getLoc(), onehotTy, indices, depth);
|
|
|
|
for (int i = valuesTy.getSizes().size(); i > axis; ++i) {
|
|
std::swap(onehotShape[i - 1], onehotShape[i]);
|
|
Value iv0 = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
Value iv1 = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i - 1));
|
|
|
|
onehotTy =
|
|
rewriter.getType<Torch::ValueTensorType>(onehotShape, i32Ty);
|
|
onehot = rewriter.create<Torch::AtenTransposeIntOp>(loc, resultType,
|
|
onehot, iv1, iv0);
|
|
}
|
|
|
|
// Change one hot to an array of booleans to select value:
|
|
auto i1Ty = rewriter.getI1Type();
|
|
auto torchqTy = Torch::getScalarTypeForType(i1Ty);
|
|
Value tyConst = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(),
|
|
rewriter.getIntegerAttr(rewriter.getIntegerType(64),
|
|
static_cast<int64_t>(torchqTy)));
|
|
|
|
onehotTy = rewriter.getType<Torch::ValueTensorType>(onehotShape, i1Ty);
|
|
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
onehot = rewriter.create<Torch::AtenToDtypeOp>(
|
|
loc, onehotTy, onehot, tyConst,
|
|
/*non_blocking=*/cstFalse, /*copy=*/cstFalse,
|
|
/*memory_format=*/none);
|
|
|
|
onehot = rewriter.create<Torch::AtenWhereScalarOp>(loc, resultType,
|
|
onehot, on, off);
|
|
|
|
rewriter.replaceOp(binder.op, onehot);
|
|
return success();
|
|
});
|
|
patterns.onOp("HardSwish", 14,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.tensorResultType(resultType)) {
|
|
return failure();
|
|
}
|
|
rewriter.replaceOpWithNewOp<Torch::AtenHardswishOp>(
|
|
binder.op, resultType, input);
|
|
return success();
|
|
});
|
|
|
|
patterns.onOp(
|
|
"Hardmax", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
// onnx.Hardmax can be expanded into the following python code:
|
|
//
|
|
// import torch.nn.functional as F
|
|
// def hardmax(tensor, dim=-1):
|
|
// maximums = torch.argmax(tensor, dim=dim, keepdim=False)
|
|
// return F.one_hot(maximums)
|
|
//
|
|
// Given an example input:
|
|
// tensor([[1, 2, 3],
|
|
// [4, 6, 5],
|
|
// [9, 8, 7]])
|
|
// Above code yields the following:
|
|
// tensor([[0, 0, 1],
|
|
// [0, 1, 0],
|
|
// [1, 0, 0]])
|
|
|
|
Torch::ValueTensorType resultType;
|
|
int64_t axisValue;
|
|
Value input, axis;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.s64IntegerAttr(axisValue, "axis") ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto loc = binder.getLoc();
|
|
|
|
std::optional<int64_t> axisIntTorch =
|
|
onnxDtypeIntToTorchDtypeInt(axisValue);
|
|
if (!axisIntTorch.has_value())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented support for the given axis conversion");
|
|
axis = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(axisIntTorch.value()));
|
|
|
|
// torch.argmax
|
|
Value constKeepDims = rewriter.create<Torch::ConstantBoolOp>(
|
|
loc, rewriter.getType<Torch::BoolType>(),
|
|
rewriter.getBoolAttr(false));
|
|
Value argmax = rewriter.create<Torch::AtenArgmaxOp>(
|
|
loc, resultType, input, axis, constKeepDims);
|
|
|
|
// one_hot
|
|
Value oneInt = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenOneHotOp>(binder.op, resultType,
|
|
argmax, oneInt);
|
|
|
|
return success();
|
|
});
|
|
patterns.onOp("LpNormalization", 1,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
int64_t axis, p;
|
|
Value input;
|
|
if (binder.tensorOperand(input) ||
|
|
binder.s64IntegerAttr(axis, "axis", -1) ||
|
|
binder.s64IntegerAttr(p, "p", 2) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
auto loc = binder.getLoc();
|
|
Value cstAxis = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(axis));
|
|
Value cstP = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(p));
|
|
Value cstKeepDim = rewriter.create<Torch::ConstantBoolOp>(
|
|
loc, rewriter.getBoolAttr(true));
|
|
Value axisPrimList =
|
|
rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
llvm::ArrayRef<Value>{cstAxis});
|
|
|
|
SmallVector<int64_t> normSizes(resultType.getSizes());
|
|
int64_t rank = normSizes.size();
|
|
axis = axis % rank;
|
|
axis = (axis < 0) ? axis + rank : axis;
|
|
normSizes[axis] = 1;
|
|
auto normType = rewriter.getType<Torch::ValueTensorType>(
|
|
normSizes, resultType.getDtype());
|
|
Value norm = rewriter.create<Torch::AtenNormScalarOptDimOp>(
|
|
loc, normType, input, cstP, axisPrimList, cstKeepDim);
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenDivTensorOp>(
|
|
binder.op, resultType, input, norm);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"MaxUnpool", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
// TODO: Add support for `output_shape` arg.
|
|
if (binder.op->getNumOperands() == 3)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented: output_shape arg is not supported");
|
|
|
|
Torch::ValueTensorType resultType;
|
|
Value data, indices;
|
|
if (binder.tensorOperandAtIndex(data, 0) ||
|
|
binder.tensorOperandAtIndex(indices, 1) ||
|
|
binder.tensorResultType(resultType))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "data/indices/resultType bind failure");
|
|
std::optional<unsigned> maybeRank = Torch::getTensorRank(data);
|
|
if (!maybeRank)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: unranked tensor");
|
|
int64_t rank = *maybeRank;
|
|
int64_t spatial = rank - 2;
|
|
|
|
if (rank <= 3 || rank > 5)
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"Unimplemented: MaxUnpool support "
|
|
"only present for rank 4/5 input");
|
|
|
|
if (!(resultType.hasSizes() && resultType.areAllSizesKnown()))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented: expected result to have all shapes "
|
|
"statically known");
|
|
|
|
SmallVector<int64_t> resultShape(resultType.getSizes());
|
|
Value resultShapeList =
|
|
createConstantIntList(binder, rewriter, resultShape);
|
|
if (rank == 4) {
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxUnpool2dOp>(
|
|
binder.op, resultType, data, indices, resultShapeList);
|
|
return success();
|
|
}
|
|
|
|
SmallVector<int64_t> padding, strides;
|
|
if (binder.s64IntegerArrayAttr(padding, "pads", {}))
|
|
return rewriter.notifyMatchFailure(binder.op, "pads bind failure");
|
|
if (!padding.empty() &&
|
|
padding.size() != static_cast<size_t>(2 * spatial))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "padding list must contain (begin,end) pair for each "
|
|
"spatial axis");
|
|
if (binder.s64IntegerArrayAttr(strides, "strides", {}))
|
|
return rewriter.notifyMatchFailure(binder.op, "strides bind failure");
|
|
if (!strides.empty() && strides.size() != static_cast<size_t>(spatial))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "strides list size does not match the number of axes");
|
|
|
|
if (padding.empty())
|
|
padding.resize(spatial, 0);
|
|
if (strides.empty())
|
|
strides.resize(spatial, 1);
|
|
|
|
// If the padding is symmetric we can push the padding
|
|
// operation to the torch operator.
|
|
if (padding.size() == static_cast<size_t>(2 * spatial)) {
|
|
bool equal = true;
|
|
for (int i = 0; i < spatial; ++i) {
|
|
equal = equal && (padding[i] == padding[i + spatial]);
|
|
}
|
|
if (equal)
|
|
padding.resize(spatial);
|
|
}
|
|
|
|
Value paddingList = createConstantIntList(binder, rewriter, padding);
|
|
Value stridesList = createConstantIntList(binder, rewriter, strides);
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenMaxUnpool3dOp>(
|
|
binder.op, resultType, data, indices, resultShapeList, stridesList,
|
|
paddingList);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"GroupNormalization", 18,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
Value input, scale, bias;
|
|
int64_t numGroups, stashType;
|
|
float epsilon;
|
|
if (binder.tensorOperandAtIndex(input, 0) ||
|
|
binder.tensorOperandAtIndex(scale, 1) ||
|
|
binder.tensorOperandAtIndex(bias, 2) ||
|
|
binder.tensorResultType(resultType) ||
|
|
binder.s64IntegerAttr(numGroups, "num_groups") ||
|
|
binder.f32FloatAttr(epsilon, "epsilon", 1e-5) ||
|
|
binder.s64IntegerAttr(stashType, "stash_type", 1))
|
|
return failure();
|
|
|
|
// Since the support for `stash_type` arg does not exist in
|
|
// the torch op so we just check for the stash_type to be same
|
|
// as the input dtype since that won't require us to do any
|
|
// input type conversion and hence can be supported.
|
|
std::optional<int64_t> stashTypeIntTorch =
|
|
onnxDtypeIntToTorchDtypeInt(stashType);
|
|
if (!stashTypeIntTorch.has_value())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented support for the given stash_type");
|
|
|
|
FailureOr<Type> stashDtype = Torch::getTypeForScalarType(
|
|
binder.op->getContext(),
|
|
(torch_upstream::ScalarType)stashTypeIntTorch.value());
|
|
if (failed(stashDtype))
|
|
return failure();
|
|
auto inputDtype =
|
|
cast<Torch::ValueTensorType>(input.getType()).getOptionalDtype();
|
|
if (*stashDtype != inputDtype)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented: stash_type != input dtype");
|
|
|
|
Value cstEpsilon = rewriter.create<Torch::ConstantFloatOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(),
|
|
rewriter.getF64FloatAttr((double)epsilon));
|
|
Value cstNumGroups = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(numGroups));
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getBoolAttr(false));
|
|
rewriter.replaceOpWithNewOp<Torch::AtenGroupNormOp>(
|
|
binder.op, resultType, input, cstNumGroups, scale, bias, cstEpsilon,
|
|
/*cudnn_enabled=*/cstFalse);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"Optional", 15, [](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::OptionalType resultType;
|
|
Value input;
|
|
|
|
if (binder.getNumOperands() == 0)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented support for missing input element");
|
|
|
|
if (binder.tensorListOperand(input))
|
|
if (binder.tensorOperand(input))
|
|
return failure();
|
|
|
|
if (binder.optionalResultType(resultType))
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(binder.op, resultType,
|
|
input);
|
|
return success();
|
|
});
|
|
patterns.onOp("OptionalGetElement", 15,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ListType tensorListResultType;
|
|
Torch::ValueTensorType tensorResultType;
|
|
Value input;
|
|
|
|
if (binder.tensorListResultType(tensorListResultType)) {
|
|
if (binder.tensorResultType(tensorResultType))
|
|
return failure();
|
|
|
|
if (binder.optionalTensorOperand(input)) {
|
|
if (binder.tensorOperand(input))
|
|
return failure();
|
|
|
|
// It means the input is a tensor.
|
|
rewriter.replaceOp(binder.op, input);
|
|
return success();
|
|
}
|
|
|
|
// It means the input is an optional tensor.
|
|
rewriter.replaceOpWithNewOp<Torch::PrimUncheckedCastOp>(
|
|
binder.op, tensorResultType, input);
|
|
return success();
|
|
}
|
|
|
|
if (binder.optionalTensorListOperand(input)) {
|
|
if (binder.tensorListOperand(input))
|
|
return failure();
|
|
|
|
// It means the input is a tensor list.
|
|
rewriter.replaceOp(binder.op, input);
|
|
return success();
|
|
}
|
|
|
|
// It means the input is an optional tensor list.
|
|
rewriter.replaceOpWithNewOp<Torch::PrimUncheckedCastOp>(
|
|
binder.op, tensorListResultType, input);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"OptionalHasElement", 15,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
if (binder.tensorResultType(resultType))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"result type bind failed");
|
|
|
|
Value input;
|
|
bool output;
|
|
if (!binder.tensorListOperand(input) || !binder.tensorOperand(input) ||
|
|
!binder.optionalTensorListOperand(input) ||
|
|
!binder.optionalTensorOperand(input))
|
|
output = true;
|
|
else
|
|
output = false;
|
|
|
|
Value cstOutput = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr((int64_t)output));
|
|
Value cstDtype = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(),
|
|
rewriter.getI64IntegerAttr((int)torch_upstream::ScalarType::Bool));
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(
|
|
binder.getLoc(), rewriter.getBoolAttr(false));
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
|
|
Value dataList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
SmallVector<Value>{cstOutput});
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenTensorOp>(
|
|
binder.op, resultType, dataList, /*dtype=*/cstDtype,
|
|
/*layout=*/cstNone, /*requires_grad=*/cstFalse);
|
|
return success();
|
|
});
|
|
patterns.onOp(
|
|
"NonMaxSuppression", 10,
|
|
[](OpBinder binder, ConversionPatternRewriter &rewriter) {
|
|
Torch::ValueTensorType resultType;
|
|
SmallVector<Value> operands;
|
|
int64_t centerPointBox;
|
|
if (binder.tensorOperandsList(operands) ||
|
|
binder.s64IntegerAttr(centerPointBox, "center_point_box", 0) ||
|
|
binder.tensorResultType(resultType))
|
|
return failure();
|
|
|
|
// TODO: Add support for non-zero center_point_box value.
|
|
if (centerPointBox != 0)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented: expected center_point_box "
|
|
"attribute value to be 0");
|
|
|
|
// TODO: Add support for optional arguments to be absent.
|
|
if (operands.size() != 5)
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "unimplemented: expected all 5 args to be present");
|
|
|
|
// Squeeze the boxes and scores tensor.
|
|
// In Onnx, the shape of boxes is [BxNx4] while the
|
|
// torchvision expects it to be of shape [Nx4]. Similarly, for
|
|
// the scores tensor shape in Onnx is [BxCxN] while the
|
|
// torchvision expects it to be of shape [N].
|
|
Value boxes = operands[0], scores = operands[1];
|
|
FailureOr<Value> squeezedBoxes = Torch::squeezeTensor(
|
|
rewriter, binder.op, binder.getLoc(), 0, boxes);
|
|
if (failed(squeezedBoxes))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"failed to squeeze boxes tensor");
|
|
|
|
FailureOr<Value> squeezedScores = Torch::squeezeTensor(
|
|
rewriter, binder.op, binder.getLoc(), 0, scores);
|
|
if (failed(squeezedScores))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"failed to squeeze scores tensor");
|
|
squeezedScores = Torch::squeezeTensor(
|
|
rewriter, binder.op, binder.getLoc(), 0, squeezedScores.value());
|
|
if (failed(squeezedScores))
|
|
return rewriter.notifyMatchFailure(binder.op,
|
|
"failed to squeeze scores tensor");
|
|
|
|
boxes = squeezedBoxes.value();
|
|
scores = squeezedScores.value();
|
|
|
|
// TODO: Add support for handling score_threshold arg.
|
|
// If score_threshold > min(scores) then the op can't be lowered since
|
|
// the torchvision::nms op doesn't have support for handling the
|
|
// score_threshold arg.
|
|
Value scoreThreshold = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(), operands[4]);
|
|
Value minScores = rewriter.create<Torch::AtenMinOp>(
|
|
binder.getLoc(),
|
|
Torch::ValueTensorType::get(binder.op->getContext(), {},
|
|
rewriter.getF32Type()),
|
|
scores);
|
|
minScores = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(), minScores);
|
|
|
|
Value scoresCond = rewriter.create<Torch::AtenGeFloatOp>(
|
|
binder.getLoc(), minScores, scoreThreshold);
|
|
rewriter.create<Torch::RuntimeAssertOp>(
|
|
binder.getLoc(), scoresCond,
|
|
rewriter.getStringAttr(
|
|
"unimplemented: score_threshold should be <= min(scores)"));
|
|
|
|
Value iouThreshold = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::FloatType>(), operands[3]);
|
|
Value result = rewriter.create<Torch::TorchvisionNmsOp>(
|
|
binder.getLoc(), resultType, boxes, scores, iouThreshold);
|
|
|
|
// The result generated by torchvision.nms op is of shape [n], while the
|
|
// onnx expects it to be of shape [n, 3]. Hence, we unsqueeze the tensor
|
|
// and make it of shape [n, 1] and then concatenate it with a zero
|
|
// tensor of shape [n, 2] to make it of shape [n, 3].
|
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(1));
|
|
FailureOr<Value> unsqueezedResult =
|
|
Torch::unsqueezeTensor(rewriter, binder.op, result, dim);
|
|
if (failed(unsqueezedResult))
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "failed to unsqueeze result tensor");
|
|
result = unsqueezedResult.value();
|
|
|
|
Value numOutputBoxes = rewriter.create<Torch::AtenSizeIntOp>(
|
|
binder.getLoc(), result,
|
|
rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(0)));
|
|
SmallVector<Value> zerosShapeValues{numOutputBoxes};
|
|
zerosShapeValues.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
binder.getLoc(), rewriter.getI64IntegerAttr(2)));
|
|
Value zerosShapeList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.getLoc(),
|
|
rewriter.getType<Torch::ListType>(
|
|
rewriter.getType<Torch::IntType>()),
|
|
zerosShapeValues);
|
|
|
|
std::optional<ArrayRef<int64_t>> resultShape =
|
|
cast<Torch::ValueTensorType>(result.getType()).getOptionalSizes();
|
|
if (!resultShape.has_value())
|
|
return rewriter.notifyMatchFailure(
|
|
binder.op, "expected result tensor to have shape");
|
|
llvm::SmallVector<int64_t> zerosShape = {resultShape->front(), 2};
|
|
auto zerosTy = Torch::ValueTensorType::get(
|
|
resultType.getContext(), zerosShape, resultType.getOptionalDtype());
|
|
Value cstNone = rewriter.create<Torch::ConstantNoneOp>(binder.getLoc());
|
|
Value zeros = rewriter.create<Torch::AtenZerosOp>(
|
|
binder.getLoc(), zerosTy, zerosShapeList, cstNone, cstNone, cstNone,
|
|
cstNone);
|
|
|
|
Type listElemType =
|
|
cast<Torch::BaseTensorType>(resultType)
|
|
.getWithSizesAndDtype(/*optionalSizes=*/std::nullopt,
|
|
/*optionalDtype=*/nullptr);
|
|
Type listType = Torch::ListType::get(listElemType);
|
|
Value tensorList = rewriter.create<Torch::PrimListConstructOp>(
|
|
binder.op->getLoc(), listType, SmallVector<Value>{result, zeros});
|
|
|
|
// TODO: Add support for handling max_output_boxes_per_class arg.
|
|
// If numOutputBoxes (N) > max_output_boxes_per_class then the op can't
|
|
// be lowered since the torchvision::nms op doesn't have support for
|
|
// handling the max_output_boxes_per_class arg. Also, we have already
|
|
// constrained the number of classes to be 1 above, so the number of
|
|
// output boxes inferred from the result is num_output_boxes_per_class.
|
|
Value maxOutputBoxesPerClass = rewriter.create<Torch::AtenItemOp>(
|
|
binder.getLoc(), rewriter.getType<Torch::IntType>(), operands[2]);
|
|
Value boxesCond = rewriter.create<Torch::AtenLeIntOp>(
|
|
binder.getLoc(), numOutputBoxes, maxOutputBoxesPerClass);
|
|
rewriter.create<Torch::RuntimeAssertOp>(
|
|
binder.getLoc(), boxesCond,
|
|
rewriter.getStringAttr(
|
|
"unimplemented: number of output boxes per class should be "
|
|
"<= max_output_boxes_per_class"));
|
|
|
|
rewriter.replaceOpWithNewOp<Torch::AtenCatOp>(binder.op, resultType,
|
|
tensorList, dim);
|
|
return success();
|
|
});
|
|
}
|