torch-mlir/projects/pt1/e2e_testing/main.py

256 lines
9.2 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import argparse
import re
import sys
from torch_mlir_e2e_test.framework import run_tests
from torch_mlir_e2e_test.reporting import report_results
from torch_mlir_e2e_test.registry import GLOBAL_TEST_REGISTRY
# Available test configs.
from torch_mlir_e2e_test.configs import (
LazyTensorCoreTestConfig,
LinalgOnTensorsBackendTestConfig,
StablehloBackendTestConfig,
NativeTorchTestConfig,
OnnxBackendTestConfig,
TorchScriptTestConfig,
TosaBackendTestConfig,
TorchDynamoTestConfig,
FxImporterTestConfig,
)
from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import (
RefBackendLinalgOnTensorsBackend,
)
from torch_mlir_e2e_test.tosa_backends.linalg_on_tensors import (
LinalgOnTensorsTosaBackend,
)
from torch_mlir_e2e_test.stablehlo_backends.linalg_on_tensors import (
LinalgOnTensorsStablehloBackend,
)
from .xfail_sets import (
LINALG_XFAIL_SET,
LINALG_CRASHING_SET,
MAKE_FX_TOSA_PASS_SET,
STABLEHLO_PASS_SET,
STABLEHLO_CRASHING_SET,
TOSA_PASS_SET,
LTC_XFAIL_SET,
LTC_CRASHING_SET,
TORCHDYNAMO_XFAIL_SET,
TORCHDYNAMO_CRASHING_SET,
ONNX_CRASHING_SET,
ONNX_XFAIL_SET,
FX_IMPORTER_XFAIL_SET,
FX_IMPORTER_CRASHING_SET,
FX_IMPORTER_STABLEHLO_XFAIL_SET,
FX_IMPORTER_STABLEHLO_CRASHING_SET,
FX_IMPORTER_TOSA_XFAIL_SET,
ONNX_TOSA_XFAIL_SET,
)
# Import tests to register them in the global registry.
from torch_mlir_e2e_test.test_suite import register_all_tests
register_all_tests()
def _get_argparse():
config_choices = [
"native_torch",
"torchscript",
"linalg",
"stablehlo",
"make_fx_tosa",
"tosa",
"lazy_tensor_core",
"torchdynamo",
"onnx",
"onnx_tosa",
"fx_importer",
"fx_importer_stablehlo",
"fx_importer_tosa",
]
parser = argparse.ArgumentParser(description="Run torchscript e2e tests.")
parser.add_argument(
"-c",
"--config",
choices=config_choices,
default="linalg",
help=f"""
Meaning of options:
"linalg": run through torch-mlir"s default Linalg-on-Tensors backend.
"tosa": run through torch-mlir"s default TOSA backend.
"stablehlo": run through torch-mlir"s default Stablehlo backend.
"native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration).
"torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly).
"lazy_tensor_core": run the model through the Lazy Tensor Core frontend and execute the traced graph.
"torchdynamo": run the model through the TorchDynamo frontend and execute the graph using Linalg-on-Tensors.
"onnx": export to the model via onnx and reimport using the torch-onnx-to-torch path.
"fx_importer": run the model through the fx importer frontend and execute the graph using Linalg-on-Tensors.
"fx_importer_stablehlo": run the model through the fx importer frontend and execute the graph using Stablehlo backend.
"fx_importer_tosa": run the model through the fx importer frontend and execute the graph using the TOSA backend.
"onnx_tosa": Import ONNX to Torch via the torch-onnx-to-torch path and execute the graph using the TOSA backend.
""",
)
parser.add_argument(
"-f",
"--filter",
default=".*",
help="""
Regular expression specifying which tests to include in this run.
""",
)
parser.add_argument(
"-v",
"--verbose",
default=False,
action="store_true",
help="report test results with additional detail",
)
parser.add_argument(
"-s",
"--sequential",
default=False,
action="store_true",
help="""Run tests sequentially rather than in parallel.
This can be useful for debugging, since it runs the tests in the same process,
which make it easier to attach a debugger or get a stack trace.""",
)
parser.add_argument(
"--crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed",
metavar="TEST",
type=str,
nargs="+",
help="A set of tests to not attempt to run, since they crash and cannot be XFAILed.",
)
parser.add_argument(
"--ignore_failures",
default=False,
action="store_true",
help="return exit code 0 even if the test fails to unblock pipeline",
)
return parser
def main():
args = _get_argparse().parse_args()
all_test_unique_names = set(test.unique_name for test in GLOBAL_TEST_REGISTRY)
# Find the selected config.
if args.config == "linalg":
config = LinalgOnTensorsBackendTestConfig(RefBackendLinalgOnTensorsBackend())
xfail_set = LINALG_XFAIL_SET
crashing_set = LINALG_CRASHING_SET
elif args.config == "stablehlo":
config = StablehloBackendTestConfig(LinalgOnTensorsStablehloBackend())
xfail_set = all_test_unique_names - STABLEHLO_PASS_SET
crashing_set = STABLEHLO_CRASHING_SET
elif args.config == "tosa":
config = TosaBackendTestConfig(LinalgOnTensorsTosaBackend())
xfail_set = all_test_unique_names - TOSA_PASS_SET
crashing_set = set()
elif args.config == "make_fx_tosa":
config = TosaBackendTestConfig(LinalgOnTensorsTosaBackend(), use_make_fx=True)
xfail_set = all_test_unique_names - MAKE_FX_TOSA_PASS_SET
crashing_set = set()
elif args.config == "native_torch":
config = NativeTorchTestConfig()
xfail_set = set()
crashing_set = set()
elif args.config == "torchscript":
config = TorchScriptTestConfig()
xfail_set = set()
crashing_set = set()
elif args.config == "lazy_tensor_core":
config = LazyTensorCoreTestConfig()
xfail_set = LTC_XFAIL_SET
crashing_set = LTC_CRASHING_SET
elif args.config == "fx_importer":
config = FxImporterTestConfig(RefBackendLinalgOnTensorsBackend())
xfail_set = FX_IMPORTER_XFAIL_SET
crashing_set = FX_IMPORTER_CRASHING_SET
elif args.config == "fx_importer_stablehlo":
config = FxImporterTestConfig(LinalgOnTensorsStablehloBackend(), "stablehlo")
xfail_set = FX_IMPORTER_STABLEHLO_XFAIL_SET
crashing_set = FX_IMPORTER_STABLEHLO_CRASHING_SET
elif args.config == "fx_importer_tosa":
config = FxImporterTestConfig(LinalgOnTensorsTosaBackend(), "tosa")
xfail_set = FX_IMPORTER_TOSA_XFAIL_SET
crashing_set = set()
elif args.config == "torchdynamo":
config = TorchDynamoTestConfig(RefBackendLinalgOnTensorsBackend())
xfail_set = TORCHDYNAMO_XFAIL_SET
crashing_set = TORCHDYNAMO_CRASHING_SET
elif args.config == "onnx":
config = OnnxBackendTestConfig(RefBackendLinalgOnTensorsBackend())
xfail_set = ONNX_XFAIL_SET
crashing_set = ONNX_CRASHING_SET
elif args.config == "onnx_tosa":
config = OnnxBackendTestConfig(LinalgOnTensorsTosaBackend(), output_type="tosa")
xfail_set = ONNX_TOSA_XFAIL_SET
crashing_set = set()
do_not_attempt = set(
args.crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed or []
).union(crashing_set)
available_tests = [
test for test in GLOBAL_TEST_REGISTRY if test.unique_name not in do_not_attempt
]
if args.crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed is not None:
for arg in args.crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed:
if arg not in all_test_unique_names:
print(
f"ERROR: --crashing_tests_to_not_attempt_to_run_and_a_bug_is_filed argument '{arg}' is not a valid test name"
)
sys.exit(1)
# Find the selected tests, and emit a diagnostic if none are found.
tests = [
test for test in available_tests if re.match(args.filter, test.unique_name)
]
if len(tests) == 0:
print(f"ERROR: the provided filter {args.filter!r} does not match any tests")
print("The available tests are:")
for test in available_tests:
print(test.unique_name)
sys.exit(1)
# Run the tests.
results = run_tests(tests, config, args.sequential, args.verbose)
# Report the test results.
failed = report_results(results, xfail_set, args.verbose, args.config)
if args.config == "torchdynamo":
print(
"\033[91mWarning: the TorchScript based dynamo support is deprecated. "
"The config for torchdynamo is planned to be removed in the future.\033[0m"
)
if args.ignore_failures:
sys.exit(0)
sys.exit(1 if failed else 0)
def _suppress_warnings():
import warnings
# Ignore warning due to Python bug:
# https://stackoverflow.com/questions/4964101/pep-3118-warning-when-using-ctypes-array-as-numpy-array
warnings.filterwarnings(
"ignore",
message="A builtin ctypes object gave a PEP3118 format string that does not match its itemsize",
)
if __name__ == "__main__":
_suppress_warnings()
main()