torch-mlir/e2e_testing/torchscript/main.py

152 lines
6.0 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import argparse
import os
import pickle
import re
import sys
from torch_mlir_e2e_test.torchscript.framework import TestConfig, run_tests
from torch_mlir_e2e_test.torchscript.reporting import report_results
from torch_mlir_e2e_test.torchscript.registry import GLOBAL_TEST_REGISTRY
# Available test configs.
from torch_mlir_e2e_test.torchscript.configs import (
LinalgOnTensorsBackendTestConfig, NativeTorchTestConfig, TorchScriptTestConfig, TosaBackendTestConfig
)
from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import RefBackendLinalgOnTensorsBackend
from torch_mlir_e2e_test.tosa_backends.linalg_on_tensors import LinalgOnTensorsTosaBackend
from .xfail_sets import REFBACKEND_XFAIL_SET, TOSA_PASS_SET, COMMON_TORCH_MLIR_LOWERING_XFAILS
# Import tests to register them in the global registry.
# Make sure to use `tools/torchscript_e2e_test.sh` wrapper for invoking
# this script.
from . import basic
from . import vision_models
from . import mlp
from . import conv
from . import batchnorm
from . import quantized_models
from . import elementwise
from . import type_promotion
from . import type_conversion
from . import backprop
from . import reduction
from . import argmax
from . import matmul
from . import view
from . import scalar
def _get_argparse():
config_choices = ['native_torch', 'torchscript', 'refbackend', 'tosa', 'external']
parser = argparse.ArgumentParser(description='Run torchscript e2e tests.')
parser.add_argument('-c', '--config',
choices=config_choices,
default='refbackend',
help=f'''
Meaning of options:
"refbackend": run through torch-mlir's RefBackend.
"tosa": run through torch-mlir's default TOSA backend.
"native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration).
"torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly).
"external": use an external backend, specified by the `--external-backend` option.
''')
parser.add_argument('--external-config',
help=f'''
Specifies a path to a Python file, which will be `exec`'ed.
The file has the following contract:
- The global variable `config` should be set to an instance of `TestConfig`.
- `xfail_set` should be set to a set of test unique identifiers that are
expected to fail. The global `COMMON_TORCH_MLIR_LOWERING_XFAILS` provides
a common set of xfails that won't work on backends because torch-mlir
itself does not handle them.
''')
parser.add_argument('-f', '--filter', default='.*', help='''
Regular expression specifying which tests to include in this run.
''')
parser.add_argument('-v', '--verbose',
default=False,
action='store_true',
help='report test results with additional detail')
parser.add_argument('--serialized-test-dir', default=None, type=str, help='''
The directory containing serialized pre-built tests.
Right now, these are additional tests which require heavy Python dependencies
to generate (or cannot even be generated with the version of PyTorch used by
torch-mlir).
See `build_tools/torchscript_e2e_heavydep_tests/generate_serialized_tests.sh`
for more information on building these artifacts.
''')
return parser
def main():
args = _get_argparse().parse_args()
all_tests = list(GLOBAL_TEST_REGISTRY)
if args.serialized_test_dir:
for root, dirs, files in os.walk(args.serialized_test_dir):
for filename in files:
with open(os.path.join(root, filename), 'rb') as f:
all_tests.append(pickle.load(f).as_test())
all_test_unique_names = set(test.unique_name for test in all_tests)
# Find the selected config.
if args.config == 'refbackend':
config = LinalgOnTensorsBackendTestConfig(RefBackendLinalgOnTensorsBackend())
xfail_set = REFBACKEND_XFAIL_SET
if args.config == 'tosa':
config = TosaBackendTestConfig(LinalgOnTensorsTosaBackend())
xfail_set = all_test_unique_names - TOSA_PASS_SET
elif args.config == 'native_torch':
config = NativeTorchTestConfig()
xfail_set = {}
elif args.config == 'torchscript':
config = TorchScriptTestConfig()
xfail_set = {}
elif args.config == 'external':
with open(args.external_config, 'r') as f:
code = compile(f.read(), args.external_config, 'exec')
exec_globals = {
'COMMON_TORCH_MLIR_LOWERING_XFAILS': COMMON_TORCH_MLIR_LOWERING_XFAILS}
exec(code, exec_globals)
config = exec_globals.get('config')
xfail_set = exec_globals.get('xfail_set')
if config is None or not isinstance(config, TestConfig):
print(
f'ERROR: the script {args.external_config} did not set a global variable `config`'
)
sys.exit(1)
if xfail_set is None:
print(
f'ERROR: the script {args.external_config} did not set a global variable `xfail_set`'
)
sys.exit(1)
# Find the selected tests, and emit a diagnostic if none are found.
tests = [
test for test in all_tests
if re.match(args.filter, test.unique_name)
]
if len(tests) == 0:
print(
f'ERROR: the provided filter {args.filter!r} does not match any tests'
)
print('The available tests are:')
for test in all_tests:
print(test.unique_name)
sys.exit(1)
# Run the tests.
results = run_tests(tests, config)
# Report the test results.
failed = report_results(results, xfail_set, args.verbose)
sys.exit(1 if failed else 0)
if __name__ == '__main__':
main()