torch-mlir/frontends/pytorch/test/node_import/loop.py

73 lines
3.8 KiB
Python

# -*- Python -*-
# This file is licensed under a pytorch-style license
# See frontends/pytorch/LICENSE for license information.
import torch
import torch_mlir
import typing
# RUN: %PYTHON %s | npcomp-opt | FileCheck %s
mb = torch_mlir.ModuleBuilder()
# CHECK-LABEL: func @__torch__.prim_Loop_forlike(
# CHECK-SAME: %[[MAX_ITERATIONS:.*]]: i64) -> f64 {
# CHECK: %[[BOOL_TRUE:.*]] = basicpy.bool_constant true
# CHECK: %[[F_INIT:.*]] = constant 0.000000e+00 : f64
# CHECK: %[[RESULTS:.*]] = torch.prim.Loop %[[MAX_ITERATIONS]], %[[BOOL_TRUE]], init(%[[F_INIT]]) {
# CHECK: ^bb0(%[[IV:.*]]: i64, %[[F_ITER:.*]]: f64):
# CHECK: %[[F_NEXT:.*]] = torch.kernel_call "aten::add" %[[F_ITER]], %[[IV]] : (f64, i64) -> f64 {sigArgTypes = ["float", "int"], sigIsMutable = false, sigIsVararg = false, sigIsVarret = false, sigRetTypes = ["float"]}
# CHECK: torch.prim.Loop.condition %[[BOOL_TRUE]], iter(%[[F_NEXT]] : f64)
# CHECK: } : (i64, !basicpy.BoolType, f64) -> f64
# CHECK: return %[[RESULTS:.*]] : f64
@mb.import_function
@torch.jit.script
def prim_Loop_forlike(n: int):
f = 0.0
for i in range(n):
f += i
return f
# CHECK-LABEL: func @__torch__.prim_Loop_whilelike(
# CHECK-SAME: %[[VAL_0:.*]]: i64) -> f64 {
# CHECK: %[[F_INIT:.*]] = constant 3.200000e+00 : f64
# CHECK: %[[MAX_ITERATIONS:.*]] = constant 9223372036854775807 : i64
# CHECK: %[[COND_INIT:.*]] = torch.kernel_call "aten::lt" %[[F_INIT]], %[[VAL_0]] : (f64, i64) -> !basicpy.BoolType {sigArgTypes = ["float", "int"], sigIsMutable = false, sigIsVararg = false, sigIsVarret = false, sigRetTypes = ["bool"]}
# CHECK: %[[RET:.*]] = torch.prim.Loop %[[MAX_ITERATIONS]], %[[COND_INIT]], init(%[[F_INIT]]) {
# CHECK: ^bb0(%[[F_ITER:.*]]: i64, %[[F_ITER:.*]]: f64):
# CHECK: %[[F_NEXT:.*]] = torch.kernel_call "aten::mul" %[[F_ITER]], %[[F_ITER]] : (f64, f64) -> f64 {sigArgTypes = ["float", "float"], sigIsMutable = false, sigIsVararg = false, sigIsVarret = false, sigRetTypes = ["float"]}
# CHECK: %[[COND_ITER:.*]] = torch.kernel_call "aten::lt" %[[F_NEXT]], %[[VAL_0]] : (f64, i64) -> !basicpy.BoolType {sigArgTypes = ["float", "int"], sigIsMutable = false, sigIsVararg = false, sigIsVarret = false, sigRetTypes = ["bool"]}
# CHECK: torch.prim.Loop.condition %[[COND_ITER]], iter(%[[F_NEXT]] : f64)
# CHECK: } : (i64, !basicpy.BoolType, f64) -> f64
# CHECK: return %[[RET:.*]] : f64
@mb.import_function
@torch.jit.script
def prim_Loop_whilelike(n: int):
f = 3.2
while f < n:
f = f * f
return f
# CHECK-LABEL: func @__torch__.prim_Loop_derefine(
# CHECK-SAME: %[[ARG:.*]]: i64) -> !torch.optional<i64> {
# CHECK: %[[TRUE:.*]] = basicpy.bool_constant true
# CHECK: %[[NONE:.*]] = basicpy.singleton : !basicpy.NoneType
# CHECK: %[[NONE_DEREFINED:.*]] = torch.derefine %[[NONE]] : !basicpy.NoneType -> !torch.optional<i64>
# CHECK: %[[RET:.*]] = torch.prim.Loop %[[ARG]], %[[TRUE]], init(%[[NONE_DEREFINED]]) {
# CHECK: ^bb0(%[[IV:.*]]: i64, %[[X_ITER:.*]]: !torch.optional<i64>):
# CHECK: %[[X_NEXT:.*]] = torch.derefine %[[ARG]] : i64 -> !torch.optional<i64>
# CHECK: torch.prim.Loop.condition %[[TRUE]], iter(%[[X_NEXT]] : !torch.optional<i64>)
# CHECK: } : (i64, !basicpy.BoolType, !torch.optional<i64>) -> !torch.optional<i64>
# CHECK: return %[[RET:.*]] : !torch.optional<i64>
@mb.import_function
@torch.jit.script
def prim_Loop_derefine(n: int):
x: typing.Optional[int] = None
for i in range(n):
x = n
return x
mb.module.operation.print()
print()