torch-mlir/e2e_testing
Sean Silva 28957adaac [torchdynamo] Initial TorchDynamo support
This adds a basic e2e Config for TorchDynamo using
Linalg-on-Tensors/RefBackend.
But TorchDynamo is pretty orthogonal to
various other pieces, so it should compose nicely with variations like:
- Switching out all the backends (Linalg-on-Tensors, TOSA, MHLO)
- PyTorch functionalization and decompositions
- Taking the example inputs and compiling with all dynamic or all static
  shapes without duplicating tests.

This adds it to the CI, but there are still a lot of XFAIL's.

This also adds a helper `from torch_mlir.dynamo import
make_simple_dynamo_backend` which simplifies some of the steps for
making a Torch-MLIR-based TorchDynamo backend. We include "simple" in
the name because we are going to be exploring various things next from
the long-term roadmap.

The next steps are:
- Burn down all the XFAIL's.
- Start working on the pieces from the [long-term roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md).
  - Add functionalization/decompositions into the TorchDynamo flow and
    remove reliance on the current Torch-MLIR "frontend".
  - Write a pure-Python direct FX->MLIR importer.
  - Hook up the new PyTorch symbolic shape stuff.
  - Explore PrimTorch decompositions for simplifying backends.
2022-11-24 04:10:25 -08:00
..
main.py [torchdynamo] Initial TorchDynamo support 2022-11-24 04:10:25 -08:00
xfail_sets.py [torchdynamo] Initial TorchDynamo support 2022-11-24 04:10:25 -08:00