torch-mlir/python/npcomp/dialect/Numpy.py

122 lines
3.3 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
from npcomp.native.mlir import ir
__all__ = [
"load_builtin_module",
"Types",
]
class Ops(ir.Ops):
r"""Dialect ops.
>>> c = ir.MLIRContext()
>>> t = Types(c)
>>> m = c.new_module()
>>> tensor_type = t.tensor(t.f32)
>>> ops = Ops(c)
>>> ops.builder.insert_block_start(m.first_block)
>>> f = ops.func_op("foobar", t.function(
... [tensor_type, tensor_type], [tensor_type]),
... create_entry_block=True)
>>> uf = ops.numpy_ufunc_call_op("numpy.add", tensor_type,
... *f.first_block.args)
>>> _ = ops.return_op(uf.results)
>>> print(m.to_asm())
<BLANKLINE>
<BLANKLINE>
module {
func @foobar(%arg0: tensor<*xf32>, %arg1: tensor<*xf32>) -> tensor<*xf32> {
%0 = numpy.ufunc_call @numpy.add(%arg0, %arg1) : (tensor<*xf32>, tensor<*xf32>) -> tensor<*xf32>
return %0 : tensor<*xf32>
}
}
"""
def numpy_ufunc_call_op(self, callee_symbol, result_type, *args):
"""Creates a numpy.ufunc_call op."""
c = self.context
attrs = c.dictionary_attr({
"ufunc_ref": c.flat_symbol_ref_attr(callee_symbol)
})
return self.op("numpy.ufunc_call", [result_type], args, attrs)
def numpy_narrow(self, result_type, operand):
"""Creates a numpy.narrow op."""
return self.op("numpy.narrow", [result_type], [operand])
class Types(ir.Types):
"""Container/factory for dialect types.
>>> t = Types(ir.MLIRContext())
>>> t.numpy_any_dtype
!numpy.any_dtype
>>> t.tensor(t.numpy_any_dtype, [1, 2, 3])
tensor<1x2x3x!numpy.any_dtype>
>>> t.tensor(t.numpy_any_dtype)
tensor<*x!numpy.any_dtype>
>>> t.tensor(t.numpy_any_dtype, [-1, 2])
tensor<?x2x!numpy.any_dtype>
>>> t.tensor(t.f32)
tensor<*xf32>
>>> t.function([t.i32], [t.f32])
(i32) -> f32
"""
def __init__(self, context):
super().__init__(context)
self.numpy_any_dtype = context.parse_type("!numpy.any_dtype")
def load_builtin_module(context=None):
"""Loads a module populated with numpy built-ins.
This is not a long-term solution but overcomes some bootstrapping
issues.
>>> m = load_builtin_module()
>>> op = m.region(0).blocks.front.operations.front
>>> op.is_registered
True
>>> op.name
'numpy.generic_ufunc'
Args:
context: The MLIRContext to use (None to create a new one).
Returns:
A ModuleOp.
"""
if context is None: context = ir.MLIRContext()
return context.parse_asm(_BUILTIN_MODULE_ASM)
_BUILTIN_MODULE_ASM = r"""
numpy.generic_ufunc @numpy.add (
overload(%arg0: i32, %arg1: i32) -> i32 {
%0 = addi %arg0, %arg1 : i32
numpy.ufunc_return %0 : i32
},
overload(%arg0: f32, %arg1: f32) -> f32 {
%0 = addf %arg0, %arg1 : f32
numpy.ufunc_return %0 : f32
}
)
numpy.generic_ufunc @numpy.multiply (
overload(%arg0: i32, %arg1: i32) -> i32 {
%0 = muli %arg0, %arg1 : i32
numpy.ufunc_return %0 : i32
},
overload(%arg0: f32, %arg1: f32) -> f32 {
%0 = mulf %arg0, %arg1 : f32
numpy.ufunc_return %0 : f32
}
)
"""
if __name__ == "__main__":
import doctest
doctest.testmod()