mirror of https://github.com/llvm/torch-mlir
496 lines
21 KiB
C++
496 lines
21 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "PopulatePatterns.h"
|
|
#include "Utils.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
namespace {
|
|
// Aten maxdim lowering represents the MaxDim op as an linalg.indexed_generic
|
|
// op, producing two output buffers.
|
|
//
|
|
// The first output buffer contains the maximum value found. It is initialized
|
|
// to the minimum representable value of the input element type.
|
|
//
|
|
// The second output buffer contains the index of the found maximum value. It is
|
|
// initialized to 0 and is resulting integer type.
|
|
//
|
|
// The indexed_generic op updates both the maximum value and index if the
|
|
// current value exceeds the running max.
|
|
class ConvertAtenMaxDimOp : public OpConversionPattern<AtenMaxDimOp> {
|
|
public:
|
|
using OpConversionPattern<AtenMaxDimOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(AtenMaxDimOp maxDimOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
Location loc = maxDimOp.getLoc();
|
|
Value input = adaptor.self();
|
|
RankedTensorType valResultType =
|
|
getTypeConverter()
|
|
->convertType(maxDimOp.getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
RankedTensorType idxResultType =
|
|
getTypeConverter()
|
|
->convertType(maxDimOp.getResult(1).getType())
|
|
.cast<RankedTensorType>();
|
|
RankedTensorType inputType = input.getType().cast<RankedTensorType>();
|
|
Type idxElementType = idxResultType.getElementType();
|
|
if (!idxElementType.isa<IntegerType>())
|
|
return rewriter.notifyMatchFailure(
|
|
maxDimOp,
|
|
"aten.max_dim to linalg.* requires integer-like result type");
|
|
|
|
bool keepDim = false;
|
|
if (!matchPattern(maxDimOp.keepdim(), m_TorchConstantBool(&keepDim)))
|
|
return rewriter.notifyMatchFailure(
|
|
maxDimOp, "aten.max_dim requires boolean value for keepdim");
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(maxDimOp.dim(), m_TorchConstantInt(&dim)))
|
|
return rewriter.notifyMatchFailure(
|
|
maxDimOp, "aten.max_dim to linalg.* requires int value for Dim");
|
|
dim = toPositiveDim(dim, inputType.getRank());
|
|
if (!isValidDim(dim, inputType.getRank()))
|
|
return rewriter.notifyMatchFailure(maxDimOp, "dim is not a valid dim");
|
|
|
|
Type inElementType = inputType.getElementType();
|
|
if (!inElementType.isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(
|
|
maxDimOp,
|
|
"aten.max_dim to linalg.* requires Float input element type");
|
|
}
|
|
|
|
// Constant op to account for the reduction along dim.
|
|
auto c1 = rewriter.create<arith::ConstantIndexOp>(loc, /*value=*/1);
|
|
SmallVector<Value> resultShape;
|
|
for (int64_t i = 0; i < inputType.getRank(); i++) {
|
|
if (dim != i) {
|
|
auto currentDimSize = rewriter.create<tensor::DimOp>(loc, input, i);
|
|
resultShape.push_back(currentDimSize);
|
|
} else if (keepDim)
|
|
resultShape.push_back(c1);
|
|
}
|
|
// First fill the output buffer for the index.
|
|
Value filledTensorIdx =
|
|
createZeroInitTensor(rewriter, loc, resultShape, idxElementType);
|
|
|
|
// Second fill the output buffer for the running max.
|
|
Value initTensorMax = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(resultShape), inElementType);
|
|
|
|
FloatAttr fillValueMaxAttr = rewriter.getFloatAttr(
|
|
inElementType,
|
|
APFloat::getLargest(
|
|
inElementType.cast<mlir::FloatType>().getFloatSemantics(), true));
|
|
|
|
Value fillValueMax =
|
|
rewriter.create<arith::ConstantOp>(loc, fillValueMaxAttr);
|
|
Value filledTensorMax =
|
|
rewriter.create<linalg::FillOp>(loc, fillValueMax, initTensorMax)
|
|
.result();
|
|
|
|
// Create the affine expressions that will be used to
|
|
// iterate over the input and output tensors.
|
|
// Here we also set the type of iterator: parallel or reduction.
|
|
SmallVector<AffineExpr> exprs;
|
|
SmallVector<StringRef> iteratorTypes;
|
|
SmallVector<AffineExpr> resultExprs;
|
|
for (auto size : llvm::enumerate(inputType.getShape())) {
|
|
exprs.push_back(rewriter.getAffineDimExpr(size.index()));
|
|
|
|
if (unsigned(dim) == size.index()) {
|
|
iteratorTypes.push_back(getReductionIteratorTypeName());
|
|
// If `keepDim`, create affine map to the first element
|
|
// in the current dimension.
|
|
if (keepDim)
|
|
resultExprs.push_back(rewriter.getAffineConstantExpr(0));
|
|
} else {
|
|
iteratorTypes.push_back(getParallelIteratorTypeName());
|
|
resultExprs.push_back(rewriter.getAffineDimExpr(size.index()));
|
|
}
|
|
}
|
|
auto maps = AffineMap::inferFromExprList({exprs, resultExprs, resultExprs});
|
|
auto linalgOp = rewriter.create<linalg::GenericOp>(
|
|
loc,
|
|
ArrayRef<Type>({filledTensorMax.getType(), filledTensorIdx.getType()}),
|
|
input, ValueRange({filledTensorMax, filledTensorIdx}), maps,
|
|
iteratorTypes,
|
|
[&](OpBuilder &nestedBuilder, Location nestedLoc,
|
|
ValueRange blockArgs) {
|
|
Value newValue = blockArgs[0];
|
|
Value oldValue = blockArgs[1];
|
|
Value oldIndex = blockArgs[2];
|
|
|
|
Value newIndex = rewriter.create<arith::IndexCastOp>(
|
|
nestedLoc, oldIndex.getType(),
|
|
rewriter.create<linalg::IndexOp>(loc, dim));
|
|
|
|
auto resultMax = rewriter.create<arith::MaxFOp>(
|
|
nestedLoc, newValue, oldValue);
|
|
Value predicate = rewriter.create<arith::CmpFOp>(
|
|
nestedLoc, arith::CmpFPredicate::OGT, newValue, oldValue);
|
|
auto resultIndex = rewriter.create<arith::SelectOp>(
|
|
nestedLoc, predicate, newIndex, oldIndex);
|
|
nestedBuilder.create<linalg::YieldOp>(
|
|
nestedLoc, ValueRange({resultMax, resultIndex}));
|
|
});
|
|
|
|
// This cast is required to fix the shape in the case of keepDim=True
|
|
Value maxValuesCast = rewriter.create<tensor::CastOp>(
|
|
loc, valResultType, linalgOp.getResult(0));
|
|
Value maxIdxCast = rewriter.create<tensor::CastOp>(loc, idxResultType,
|
|
linalgOp.getResult(1));
|
|
rewriter.replaceOp(maxDimOp, {maxValuesCast, maxIdxCast});
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static Value createInitElementForReduceOp(OpBuilder &b, Location loc,
|
|
Operation *op, Type elementType) {
|
|
if (isa<AtenSumOp, AtenSumDimIntListOp>(op))
|
|
return b.create<arith::ConstantOp>(loc, b.getZeroAttr(elementType));
|
|
|
|
if (isa<AtenMaxOp>(op)) {
|
|
if (elementType.isa<mlir::FloatType>())
|
|
return b.create<arith::ConstantOp>(
|
|
loc, b.getFloatAttr(
|
|
elementType,
|
|
APFloat::getLargest(
|
|
elementType.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*Negative=*/true)));
|
|
else if (elementType.isa<mlir::IntegerType>() &&
|
|
elementType.getIntOrFloatBitWidth() != 8)
|
|
return b.create<arith::ConstantOp>(
|
|
loc, b.getIntegerAttr(elementType,
|
|
APSInt::getSignedMinValue(
|
|
elementType.getIntOrFloatBitWidth())));
|
|
}
|
|
|
|
if (isa<AtenLinalgVectorNormOp>(op) || isa<AtenFrobeniusNormDimOp>(op))
|
|
return b.create<arith::ConstantOp>(loc, b.getZeroAttr(elementType));
|
|
|
|
op->emitError("unimplemented lowering in createInitElementForReduceOp");
|
|
return nullptr;
|
|
}
|
|
|
|
static Value createLinalgPayloadForReduceOp(OpBuilder &b, Location loc,
|
|
ValueRange payloadArgs,
|
|
Operation *op,
|
|
ArrayRef<Value> operands,
|
|
Type resultElementType) {
|
|
if (isa<AtenSumOp, AtenSumDimIntListOp>(op)) {
|
|
Value self =
|
|
convertScalarToDtype(b, loc, payloadArgs[0], resultElementType);
|
|
Value result = payloadArgs[1];
|
|
if (resultElementType.isa<mlir::FloatType>())
|
|
return b.create<arith::AddFOp>(loc, self, result);
|
|
else if (resultElementType.isa<mlir::IntegerType>())
|
|
return b.create<arith::AddIOp>(loc, self, result);
|
|
} else if (auto max = dyn_cast<AtenMaxOp>(op)) {
|
|
Value self =
|
|
convertScalarToDtype(b, loc, payloadArgs[0], resultElementType);
|
|
Value result = payloadArgs[1];
|
|
if (resultElementType.isa<mlir::FloatType>())
|
|
return b.create<arith::MaxFOp>(loc, self, result);
|
|
else if (resultElementType.isa<mlir::IntegerType>()) {
|
|
IntegerType intType = max.self()
|
|
.getType()
|
|
.cast<BaseTensorType>()
|
|
.getDtype()
|
|
.dyn_cast<mlir::IntegerType>();
|
|
if (intType.isUnsigned())
|
|
return b.create<arith::MaxUIOp>(loc, self, result);
|
|
if (intType.isSigned())
|
|
return b.create<arith::MaxSIOp>(loc, self, result);
|
|
}
|
|
} else if (isa<AtenLinalgVectorNormOp>(op)) {
|
|
// This creates payload for only the first of the two linalg.generic ops.
|
|
// TODO: Short-circuit operations if `ord` is zero or one.
|
|
Value elem = payloadArgs[0];
|
|
Value result = payloadArgs[1];
|
|
Value self = convertScalarToDtype(b, loc, elem, resultElementType);
|
|
auto abs = b.create<math::AbsFOp>(loc, self);
|
|
AtenLinalgVectorNormOp::Adaptor adaptor(operands);
|
|
Value ord = convertScalarToDtype(b, loc, adaptor.ord(), resultElementType);
|
|
auto pow = b.create<math::PowFOp>(loc, abs, ord);
|
|
return b.create<arith::AddFOp>(loc, pow, result);
|
|
} else if (isa<AtenFrobeniusNormDimOp>(op)) {
|
|
Value elem = payloadArgs[0];
|
|
Value result = payloadArgs[1];
|
|
Value self = convertScalarToDtype(b, loc, elem, resultElementType);
|
|
auto abs = b.create<math::AbsFOp>(loc, self);
|
|
Attribute twoAttr = b.getFloatAttr(resultElementType, 2.0);
|
|
auto ord = b.create<arith::ConstantOp>(loc, twoAttr);
|
|
auto pow = b.create<math::PowFOp>(loc, abs, ord);
|
|
return b.create<arith::AddFOp>(loc, pow, result);
|
|
}
|
|
op->emitError("unimplemented lowering in createLinalgPayloadForReduceOp");
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
class ConvertReductionOp : public ConversionPattern {
|
|
private:
|
|
/// Given a reduction operation that has the `keepdim` attribute and the
|
|
/// (optional) `dim` attribute, return the source tensor operand and the
|
|
/// literal values of the attributes or failure otherwise.
|
|
template <typename T>
|
|
FailureOr<torch_to_linalg::ReductionOpInfo>
|
|
computeReductionOpInfoForDimVariantOp(
|
|
T op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto opInfo = torch_to_linalg::ReductionOpInfo{false, Value{}, {}};
|
|
typename T::Adaptor adaptor(operands);
|
|
opInfo.tensorOperand = adaptor.self();
|
|
auto inputType = opInfo.tensorOperand.getType().cast<RankedTensorType>();
|
|
|
|
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&opInfo.keepDim)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"`keepdim` must be a constant bool");
|
|
|
|
SmallVector<int64_t> dimList;
|
|
bool isNoneOrEmptyDimList =
|
|
op.dim().getType().template isa<Torch::NoneType>();
|
|
if (matchPattern(op.dim(), m_TorchConstantIntList(dimList))) {
|
|
// Fix negative dimensions, if any, before adding to the list.
|
|
for (int64_t dim : dimList) {
|
|
dim = toPositiveDim(dim, inputType.getRank());
|
|
// Drop invalid dimensions
|
|
if (isValidDim(dim, inputType.getRank()))
|
|
opInfo.dimSet.insert(dim);
|
|
}
|
|
if (dimList.empty())
|
|
isNoneOrEmptyDimList = true;
|
|
} else if (!isNoneOrEmptyDimList) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "`dim` argument must be a constant int list or None");
|
|
}
|
|
if (isNoneOrEmptyDimList) {
|
|
// If no dimensions were specified, reduce along all dimensions
|
|
for (int64_t i = 0; i < inputType.getRank(); i++)
|
|
opInfo.dimSet.insert(i);
|
|
}
|
|
|
|
return opInfo;
|
|
}
|
|
|
|
/// Given a reduction operation, return the source tensor operand and the
|
|
/// literal values of the `keepdim` and `dim` attributes, if any, or failure
|
|
/// otherwise.
|
|
FailureOr<torch_to_linalg::ReductionOpInfo>
|
|
computeReductionOpInfo(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto opInfo = torch_to_linalg::ReductionOpInfo{false, Value{}, {}};
|
|
|
|
if (isa<AtenMaxOp, AtenSumOp>(op)) {
|
|
opInfo.tensorOperand = operands[0];
|
|
auto inputType = opInfo.tensorOperand.getType().cast<RankedTensorType>();
|
|
|
|
// `AtenSumOp` and `AtenMaxOp` reduces along all the dimensions of the
|
|
// input tensor.
|
|
for (int64_t i = 0; i < inputType.getRank(); i++)
|
|
opInfo.dimSet.insert(i);
|
|
|
|
return opInfo;
|
|
}
|
|
|
|
if (auto sumOp = dyn_cast<AtenSumDimIntListOp>(op))
|
|
return computeReductionOpInfoForDimVariantOp(sumOp, operands, rewriter);
|
|
|
|
if (auto normOp = dyn_cast<AtenLinalgVectorNormOp>(op))
|
|
return computeReductionOpInfoForDimVariantOp(normOp, operands, rewriter);
|
|
|
|
if (auto normOp = dyn_cast<AtenFrobeniusNormDimOp>(op))
|
|
return computeReductionOpInfoForDimVariantOp(normOp, operands, rewriter);
|
|
|
|
return rewriter.notifyMatchFailure(op, "not a supported reduce op");
|
|
}
|
|
|
|
/// Generate a linalg.generic operation for pointwise exponentiation of each
|
|
/// element.
|
|
Value createElementwiseExp(Location loc, Type elemType, Value exponent,
|
|
Value inputTensor,
|
|
const torch_to_linalg::ReductionOpInfo &opInfo,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
bool err = false;
|
|
auto powBodyBuilder = [&](OpBuilder &builder, Location loc,
|
|
ValueRange payloadArgs) {
|
|
Value elem = convertScalarToDtype(builder, loc, payloadArgs[0], elemType);
|
|
auto result = builder.create<math::PowFOp>(loc, elem, exponent);
|
|
if (result)
|
|
builder.create<linalg::YieldOp>(loc, Value{result});
|
|
err = !result;
|
|
};
|
|
|
|
Value powOp = torch_to_linalg::createElementwiseLinalgGeneric(
|
|
rewriter, loc, {inputTensor}, elemType, powBodyBuilder);
|
|
return err ? Value{} : powOp;
|
|
}
|
|
|
|
FailureOr<Value> createSecondReductionForVectorNormOp(
|
|
Location loc, Type elemType, AtenLinalgVectorNormOp op, Value ordOp,
|
|
Value firstReduction, const torch_to_linalg::ReductionOpInfo &opInfo,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
// Cast `ord` to float so that we can readily pass it math.powf.
|
|
Value ordValue = convertScalarToDtype(rewriter, loc, ordOp, elemType);
|
|
|
|
// TODO: Add support for ord = {0, +inf, -inf}.
|
|
auto epsilon = 1e-5;
|
|
auto ordLiteral = 0.0;
|
|
if (matchPattern(ordValue, m_TorchConstantFloat(&ordLiteral)) &&
|
|
fabs(ordLiteral) < epsilon)
|
|
return rewriter.notifyMatchFailure(op, "unimplemented: L0 norm");
|
|
|
|
if (std::isinf(ordLiteral))
|
|
return rewriter.notifyMatchFailure(op, "unimplemented: ord = +/- inf");
|
|
|
|
// Raise each summed value to the inverse of the order of the norm.
|
|
Attribute oneAttr = rewriter.getFloatAttr(elemType, 1.0);
|
|
auto oneValue = rewriter.create<arith::ConstantOp>(loc, oneAttr);
|
|
auto inverseOrdValue =
|
|
rewriter.create<arith::DivFOp>(loc, oneValue, ordValue);
|
|
|
|
// Use the results of the first reduction operation from above to generate
|
|
// a second reduction operation.
|
|
Value reduceOp = createElementwiseExp(loc, elemType, inverseOrdValue,
|
|
firstReduction, opInfo, rewriter);
|
|
if (!reduceOp)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to create linalg.generic operation for element-wise "
|
|
"exponentiation");
|
|
|
|
return reduceOp;
|
|
}
|
|
|
|
/// Generate a linalg.generic operation for a reduction.
|
|
Value createReductionOp(Location loc, Type elemType, Operation *op,
|
|
ArrayRef<Value> operands,
|
|
const torch_to_linalg::ReductionOpInfo &opInfo,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
bool err = false;
|
|
auto reductionBodyBuilder = [&](OpBuilder &builder, Location loc,
|
|
ValueRange payloadArgs) {
|
|
Value result = createLinalgPayloadForReduceOp(builder, loc, payloadArgs,
|
|
op, operands, elemType);
|
|
if (result)
|
|
builder.create<linalg::YieldOp>(loc, result);
|
|
err = !result;
|
|
};
|
|
|
|
Value initElem = createInitElementForReduceOp(rewriter, loc, op, elemType);
|
|
Value reduceOp = torch_to_linalg::createReductionLinalgGeneric(
|
|
rewriter, loc, opInfo, initElem, reductionBodyBuilder);
|
|
return err ? Value{} : reduceOp;
|
|
}
|
|
|
|
/// Depending on the operation, check validity of the result's element type.
|
|
LogicalResult
|
|
validateReductionElementType(Operation *op, Type elemType,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
if ((isa<AtenLinalgVectorNormOp>(op) || isa<AtenFrobeniusNormDimOp>(op)) &&
|
|
!elemType.isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only float types are valid for vector norm ops");
|
|
// No checks for all other reduction operations
|
|
return success();
|
|
}
|
|
|
|
public:
|
|
ConvertReductionOp(TypeConverter &typeConverter, MLIRContext *context)
|
|
: ConversionPattern(typeConverter, MatchAnyOpTypeTag(), /*benefit=*/1,
|
|
context) {}
|
|
LogicalResult
|
|
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "invalid operand or result types to use with linalg on tensors");
|
|
|
|
FailureOr<torch_to_linalg::ReductionOpInfo> opInfo =
|
|
computeReductionOpInfo(op, operands, rewriter);
|
|
if (failed(opInfo))
|
|
return opInfo;
|
|
|
|
Location loc = op->getLoc();
|
|
auto resultType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
Type elemType = resultType.getElementType();
|
|
LogicalResult elemTypeCheck =
|
|
validateReductionElementType(op, elemType, rewriter);
|
|
if (failed(elemTypeCheck))
|
|
return elemTypeCheck;
|
|
|
|
Value reduceOp =
|
|
createReductionOp(loc, elemType, op, operands, *opInfo, rewriter);
|
|
if (!reduceOp)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "failed to create linalg.generic operation for reduction");
|
|
|
|
// If this is aten.linalg_vector_norm op, then we need to generate another
|
|
// linalg.generic op that references the first linalg.generic op.
|
|
if (auto normOp = dyn_cast<AtenLinalgVectorNormOp>(op)) {
|
|
AtenLinalgVectorNormOp::Adaptor adaptor(operands);
|
|
FailureOr<Value> secondReduceOp = createSecondReductionForVectorNormOp(
|
|
loc, elemType, normOp, adaptor.ord(), reduceOp, *opInfo, rewriter);
|
|
if (failed(secondReduceOp))
|
|
return secondReduceOp;
|
|
reduceOp = *secondReduceOp;
|
|
}
|
|
|
|
// If it is aten.frobenius_norm.dim op, take the square root of reduceOp as
|
|
// the final result
|
|
if (auto normOp = dyn_cast<AtenFrobeniusNormDimOp>(op)) {
|
|
auto halfAttr = rewriter.getFloatAttr(elemType, 0.5);
|
|
auto exp = rewriter.create<arith::ConstantOp>(loc, halfAttr);
|
|
reduceOp =
|
|
createElementwiseExp(loc, elemType, exp, reduceOp, *opInfo, rewriter);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, reduceOp);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_linalg::populateReductionPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target) {
|
|
MLIRContext *context = patterns.getContext();
|
|
target.addIllegalOp<AtenMaxDimOp>();
|
|
patterns.add<ConvertAtenMaxDimOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenSumOp>();
|
|
target.addIllegalOp<AtenSumDimIntListOp>();
|
|
target.addIllegalOp<AtenMaxOp>();
|
|
target.addIllegalOp<AtenLinalgVectorNormOp>();
|
|
target.addIllegalOp<AtenFrobeniusNormDimOp>();
|
|
patterns.add<ConvertReductionOp>(typeConverter, context);
|
|
}
|