mirror of https://github.com/llvm/torch-mlir
183 lines
5.4 KiB
TableGen
183 lines
5.4 KiB
TableGen
//===- ATen.td ---------------------------------------------*- tablegen -*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
include "mlir/IR/OpBase.td"
|
|
|
|
#ifndef ATEN_OPS
|
|
#define ATEN_OPS
|
|
|
|
include "mlir/Interfaces/SideEffectInterfaces.td"
|
|
include "npcomp/Dialect/ATen/ATenOpInterface.td"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dialect definition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The ATenDialect models 'A Tensor library' from Pytorch. The intention
|
|
/// is to provide an abstraction which is isomorphic with datastructures
|
|
/// returned from the pytorch jit, enabling integration with Pytorch models.
|
|
/// Most of the actual operation definitions in tablegen are themselves
|
|
/// generated from C APIs exported by Pytorch.
|
|
def ATen_Dialect : Dialect {
|
|
let name = "aten";
|
|
let cppNamespace = "::mlir::NPCOMP::aten";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dialect types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def ATen_ListType : DialectType<ATen_Dialect,
|
|
CPred<"$_self.isa<::mlir::NPCOMP::aten::ATenListType>()">, "ATen List">,
|
|
BuildableType<"$_builder.getType<::mlir::NPCOMP::aten::ATenListType()"> {
|
|
let typeDescription = [{
|
|
A variadic list of arguments in ATen.
|
|
}];
|
|
}
|
|
|
|
// TODO: convert to "let results =" style
|
|
// TODO: Rename prefix from "aten" to "ATen" for consistency.
|
|
|
|
class aten_Op<string mnemonic, list<OpTrait> traits = [StatisticsOpInterface]> :
|
|
Op<ATen_Dialect, mnemonic, traits>;
|
|
|
|
|
|
// Most ops are automatically generated from pytorch specs.
|
|
include "npcomp/Dialect/ATen/ATenOps.td"
|
|
|
|
|
|
def aten_BatchNormOp: aten_Op<"batch_norm", [NoSideEffect, StatisticsOpInterface]>,
|
|
Results<(outs AnyTensor:$output, AnyTensor:$save_mean, AnyTensor:$save_invstd)> {
|
|
let arguments = (
|
|
ins AnyType:$arg0,
|
|
AnyType:$arg1,
|
|
AnyType:$arg2,
|
|
AnyType:$arg3,
|
|
AnyType:$arg4,
|
|
AnyType:$arg5,
|
|
AnyType:$arg6,
|
|
AnyType:$arg7,
|
|
AnyType:$arg8
|
|
);
|
|
|
|
let summary = "BatchNorm operator";
|
|
let description = [{
|
|
BatchNorm operator
|
|
}];
|
|
let extraClassDeclaration = [{
|
|
std::map<std::string, uint64_t> getStatistics();
|
|
}];
|
|
}
|
|
|
|
// We have list constants, which come out of pytorch. Represent them using
|
|
// our own constant-like type, which gets lowered to std_ConstantOp later.
|
|
def aten_ConstantOp: aten_Op<"constant", [NoSideEffect]>,
|
|
Results<(outs AnyType)> {
|
|
let summary = "Constant operator";
|
|
let description = [{
|
|
Constant operator
|
|
}];
|
|
|
|
}
|
|
|
|
// Our jit library only supports 6 argument convolutions, rather than 9
|
|
// arguments supported by pytorch. This operation allows us to represent this
|
|
// limitation temporarily.
|
|
def aten_ConvolutionOp: aten_Op<"_convolution", [NoSideEffect, StatisticsOpInterface]>,
|
|
Results<(outs AnyTensor)> {
|
|
let arguments = (
|
|
ins AnyTensor:$input,
|
|
AnyTensor:$weight,
|
|
AnyTensor:$bias,
|
|
AnyType:$stride,
|
|
AnyType:$padding,
|
|
AnyType:$dilation
|
|
);
|
|
|
|
let summary = "Convolution operator";
|
|
let description = [{
|
|
Convolution operator
|
|
}];
|
|
let extraClassDeclaration = [{
|
|
std::map<std::string, uint64_t> getStatistics();
|
|
uint64_t getOperandTransferVolume(unsigned int idx, bool read);
|
|
uint64_t getResultTransferVolume(unsigned int idx, bool read);
|
|
}];
|
|
}
|
|
|
|
// Our jit library only supports 6 argument convolutions, rather than 9
|
|
// arguments supported by pytorch. This operation allows us to represent this
|
|
// limitation temporarily.
|
|
def aten_ConvolutionBackwardOp: aten_Op<"_convolution_backward", [NoSideEffect, StatisticsOpInterface]>,
|
|
Results<(outs AnyTensor:$dx, AnyTensor:$dw, AnyTensor:$db)> {
|
|
let arguments = (
|
|
ins AnyTensor:$grad_output,
|
|
AnyTensor:$input,
|
|
AnyTensor:$weight,
|
|
AnyType:$stride,
|
|
AnyType:$padding,
|
|
AnyType:$dilation
|
|
);
|
|
|
|
let summary = "ConvolutionBackward operator";
|
|
let description = [{
|
|
ConvolutionBackward operator
|
|
}];
|
|
let extraClassDeclaration = [{
|
|
std::map<std::string, uint64_t> getStatistics();
|
|
}];
|
|
}
|
|
|
|
|
|
def aten_FlattenOp: aten_Op<"flatten", [NoSideEffect, StatisticsOpInterface]>,
|
|
Results<(outs AnyTensor)> {
|
|
let arguments = (
|
|
ins AnyType:$arg0,
|
|
AnyType:$arg1,
|
|
AnyType:$arg2
|
|
);
|
|
|
|
let summary = "Flatten operator";
|
|
let description = [{
|
|
Flatten operator
|
|
}];
|
|
let extraClassDeclaration = [{
|
|
std::map<std::string, uint64_t> getStatistics();
|
|
}];
|
|
}
|
|
|
|
def aten_MaxPool2dOp: aten_Op<"max_pool2d", [NoSideEffect, StatisticsOpInterface]>,
|
|
Results<(outs AnyTensor)> {
|
|
let arguments = (
|
|
ins AnyType:$arg0,
|
|
AnyType:$arg1,
|
|
AnyType:$arg2,
|
|
AnyType:$arg3,
|
|
AnyType:$arg4,
|
|
AnyType:$arg5
|
|
);
|
|
|
|
let summary = "MaxPool2d operator";
|
|
let description = [{
|
|
MaxPool2d operator
|
|
}];
|
|
let extraClassDeclaration = [{
|
|
std::map<std::string, uint64_t> getStatistics();
|
|
}];
|
|
}
|
|
|
|
def aten_TypeCastOp : aten_Op<"type_cast", [NoSideEffect]>,
|
|
Results<(outs AnyType)> {
|
|
let summary = "TypeCast operator";
|
|
let arguments = (
|
|
ins AnyType:$x
|
|
);
|
|
}
|
|
|
|
#endif
|