torch-mlir/lib/Dialect/Torch/Transforms/InlineGlobalSlots.cpp

422 lines
16 KiB
C++

//===- InlineGlobalSlots.cpp -------------------------------------*- C++-*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
//
// This file implements an optimistic dataflow analysis that proves that values
// used in global slot initializers are "safe" (see definition below). This
// analysis allows us to inline global slot initializers.
//
// One thing to note is that this inlining (as with all inlining) can create
// duplicate ops. That is usually not a problem, except for certain large
// tensor literals. We rely on later CSE passes to deduplicate those literals.
//
// For debugging this pass an effort has been made for
// `-debug-only=dataflow` and `-debug-only=torch-inline-global-slots` to give a
// good experience. When debugging this pass, it is recommended to start with
// `-debug-only=torch-inline-global-slots` to find values that are marked
// unsafe unexpectedly and then `-debug-only=dataflow` to find why.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "torch-inline-global-slots"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
/// A program point representing a symbol.
///
/// In principle we could use the `Operation *` program point of the Symbol op,
/// but that just adds a layer of indirection through a symbol table for the
/// purpose of this analysis.
///
/// This is easier because we only support FlatSymbolRefAttr's in Torch-MLIR in
/// a single module. If we had to support complex nested symbol references, we
/// would probably want to go through the effort to indirect through the symbol
/// tables to make things clearer.
class FlatSymbolRefLatticeAnchor
: public GenericLatticeAnchorBase<FlatSymbolRefLatticeAnchor, Operation *> {
public:
using Base::Base;
void print(raw_ostream &os) const override {
os << "FlatSymbolRefLatticeAnchor(" << getValue() << ")";
}
Location getLoc() const override {
return UnknownLoc::get(getValue()->getContext());
}
};
static bool isTypeTriviallySafe(Type type) {
return isa<Torch::IntType, Torch::FloatType, Torch::BoolType,
Torch::StringType, Torch::NoneType, Torch::ValueTensorType>(type);
}
static bool isUseTreatedWithValueSemantics(OpOperand &use) {
Operation *op = use.getOwner();
// If the op unconditionally has value semantics, then the use has value
// semantics.
if (op->hasTrait<Torch::OpTrait::HasValueSemantics>())
return true;
// The condition of the torch.prim.if op is treated with value semantics.
if (isa<PrimIfOp>(op) && use.getOperandNumber() == 0)
return true;
// TODO: Generalize the HasValueSemantics trait to support
// operand/result-granularity.
return false;
}
/// State tracking if an IR construct is "safe".
///
/// This state is tracked on Value's and also on global slots (via a
/// FlatSymbolRefLatticeAnchor).
///
/// In this context, "safe" means that the object is safe to inline.
/// This covers a few concepts
/// - the value cannot be mutated by the program
/// - the value cannot be potentially aliased, with that alias itself being
/// unsafe
class InlineGlobalSlotsAnalysisState : public AnalysisState {
public:
InlineGlobalSlotsAnalysisState(LatticeAnchor point) : AnalysisState(point) {
(void)setSafe();
}
void print(raw_ostream &os) const override {
os << "InlineGlobalSlotsAnalysisState(" << (isSafe ? "safe" : "unsafe")
<< ")";
}
/// Helper for setting the state with the correct ChangeResult.
ChangeResult setSafe(bool newIsSafe = true) {
// As an optimistic analysis, once we prove that a value is unsafe, nothing
// can prove that it is safe again. This is the monotonicity property of
// the dataflow analysis that guarantees that we reach a fixed-point.
// If that property doesn't hold, then there is a bug in the analysis.
assert(!(isSafe == false && newIsSafe == true) && "non-monotonic update");
if (isSafe == newIsSafe)
return ChangeResult::NoChange;
isSafe = newIsSafe;
return ChangeResult::Change;
}
/// Helper for updatating the state with the correct ChangeResult based on the
/// safety of a use.
ChangeResult
incorporateSafetyOfUse(const InlineGlobalSlotsAnalysisState *useState) {
// The use is safe, so no need to change anything.
if (useState->isSafe)
return ChangeResult::NoChange;
return setSafe(false);
}
/// This is an optimistic analysis. We start assuming everything is safe.
bool isSafe = true;
};
class InlineGlobalSlotsAnalysis : public DataFlowAnalysis {
public:
InlineGlobalSlotsAnalysis(DataFlowSolver &solver);
LogicalResult initialize(Operation *top) override;
LogicalResult visit(ProgramPoint *point) override;
private:
/// The local transfer function determining the safety of `value`.
bool isValueSafeTransferFunction(Value value);
/// The InitializeGlobalSlotsOp of the current module we are analyzing.
///
/// This is used to propagate the analysis from globals into to the module
/// initializer.
InitializeGlobalSlotsOp initializeGlobalSlotsOp;
};
InlineGlobalSlotsAnalysis::InlineGlobalSlotsAnalysis(DataFlowSolver &solver)
: DataFlowAnalysis(solver) {
registerAnchorKind<FlatSymbolRefLatticeAnchor>();
}
LogicalResult InlineGlobalSlotsAnalysis::initialize(Operation *top) {
auto walkResult = top->walk([this](Operation *op) {
if (auto globalSlot = dyn_cast<Torch::GlobalSlotOp>(op)) {
auto *state = getOrCreate<InlineGlobalSlotsAnalysisState>(
getLatticeAnchor<FlatSymbolRefLatticeAnchor>(globalSlot));
propagateIfChanged(state,
state->setSafe(globalSlot.getVisibility() !=
SymbolTable::Visibility::Public));
}
if (auto globalSlotSet = dyn_cast<Torch::GlobalSlotSetOp>(op)) {
auto globalSlot = SymbolTable::lookupNearestSymbolFrom<GlobalSlotOp>(
globalSlotSet, globalSlotSet.getSlotAttr());
auto *state = getOrCreate<InlineGlobalSlotsAnalysisState>(
getLatticeAnchor<FlatSymbolRefLatticeAnchor>(globalSlot));
propagateIfChanged(state, state->setSafe(false));
}
// Save the InitializeGlobalSlotsOp for later referencee
if (auto initialize = dyn_cast<Torch::InitializeGlobalSlotsOp>(op)) {
initializeGlobalSlotsOp = initialize;
}
if (failed(visit(getProgramPointAfter(op))))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (walkResult.wasInterrupted())
return failure();
return success();
}
LogicalResult InlineGlobalSlotsAnalysis::visit(ProgramPoint *point) {
if (point->isBlockStart())
return success();
if (auto op = point->getPrevOp()) {
for (auto value : op->getResults()) {
bool isSafe = isValueSafeTransferFunction(value);
auto *state = getOrCreate<InlineGlobalSlotsAnalysisState>(value);
propagateIfChanged(state, state->setSafe(isSafe));
// Handle GlobalSlotGetOp's.
if (auto opResult = dyn_cast<OpResult>(value)) {
if (auto globalSlotGet =
dyn_cast<Torch::GlobalSlotGetOp>(opResult.getOwner())) {
auto globalSlot = SymbolTable::lookupNearestSymbolFrom<GlobalSlotOp>(
globalSlotGet, globalSlotGet.getSlotAttr());
auto *flatSymbolRefPoint =
getLatticeAnchor<FlatSymbolRefLatticeAnchor>(globalSlot);
auto *valueState = getOrCreateFor<InlineGlobalSlotsAnalysisState>(
getProgramPointAfter(globalSlot), globalSlotGet.getResult());
auto *globalState =
getOrCreate<InlineGlobalSlotsAnalysisState>(flatSymbolRefPoint);
propagateIfChanged(globalState,
globalState->incorporateSafetyOfUse(valueState));
}
}
}
}
return success();
}
// This is only a member function to access protected get* functions.
bool InlineGlobalSlotsAnalysis::isValueSafeTransferFunction(Value value) {
if (isTypeTriviallySafe(value.getType()))
return true;
for (OpOperand &use : value.getUses()) {
Operation *op = use.getOwner();
if (isUseTreatedWithValueSemantics(use))
continue;
// If the op is read-only and all results are safe, then this value is
// safe. This covers, for example, view-like ops that create aliases.
if ((op->hasTrait<Torch::OpTrait::ReadOnly>() || isMemoryEffectFree(op)) &&
llvm::all_of(op->getResults(), [&](Value result) {
auto *state = getOrCreateFor<InlineGlobalSlotsAnalysisState>(
getProgramPointAfter(value.getDefiningOp()), result);
return state->isSafe;
}))
continue;
if (auto initialize = dyn_cast<Torch::InitializeGlobalSlotsOp>(op)) {
auto symName = cast<FlatSymbolRefAttr>(
initialize.getSlotSymNames()[use.getOperandNumber()]);
auto globalSlot =
SymbolTable::lookupNearestSymbolFrom<GlobalSlotOp>(op, symName);
auto *state = getOrCreateFor<InlineGlobalSlotsAnalysisState>(
getProgramPointAfter(value.getDefiningOp()),
getLatticeAnchor<FlatSymbolRefLatticeAnchor>(globalSlot));
if (state->isSafe)
continue;
}
// We may not create all the dependency edges, but that is ok since at
// this point we have already reached the fixed-point.
return false;
}
return true;
}
SmallVector<Operation *> getBackwardSliceIncludingRoot(Value initialValue) {
SetVector<Operation *> sliceSet;
getBackwardSlice(initialValue, &sliceSet);
SmallVector<Operation *> slice;
llvm::append_range(slice, sliceSet);
slice.push_back(initialValue.getDefiningOp());
return slice;
}
static bool isInitialValueTransitivelySafeToInline(Value initialValue,
DataFlowSolver &solver) {
SmallVector<Operation *> slice = getBackwardSliceIncludingRoot(initialValue);
for (Operation *op : slice) {
for (auto result : op->getResults()) {
auto *state = solver.lookupState<InlineGlobalSlotsAnalysisState>(result);
if (!state->isSafe) {
return false;
}
}
}
return true;
}
namespace {
class InlineGlobalSlotsPass
: public InlineGlobalSlotsBase<InlineGlobalSlotsPass> {
void runOnOperation() override {
ModuleOp module = getOperation();
DataFlowSolver solver;
solver.load<InlineGlobalSlotsAnalysis>();
if (failed(solver.initializeAndRun(module)))
return signalPassFailure();
LLVM_DEBUG({
module->walk([&](Operation *op) {
if (auto globalSlot = dyn_cast<Torch::GlobalSlotOp>(op)) {
auto *state = solver.lookupState<InlineGlobalSlotsAnalysisState>(
solver.getLatticeAnchor<FlatSymbolRefLatticeAnchor>(globalSlot));
state->print(llvm::dbgs());
llvm::dbgs() << ": "
<< FlatSymbolRefAttr::get(globalSlot.getSymNameAttr())
<< "\n";
return;
}
if (op->getNumResults() != 1)
return;
auto *state = solver.lookupState<InlineGlobalSlotsAnalysisState>(
op->getResult(0));
state->print(llvm::dbgs());
llvm::dbgs() << ": ";
op->dump();
});
});
Torch::InitializeGlobalSlotsOp initialize;
// TODO: Have a torch.module with an optional initializer region to make
// this tighter.
for (auto moduleInitializer :
module.getOps<Torch::GlobalSlotModuleInitializerOp>()) {
initialize = cast<Torch::InitializeGlobalSlotsOp>(
moduleInitializer.getBody()->getTerminator());
}
if (!initialize) {
return;
}
DenseSet</*FlatSymbolRefAttr*/ Attribute> safeToInline;
for (int i = 0, e = initialize->getNumOperands(); i != e; i++) {
auto slotSymName =
cast<FlatSymbolRefAttr>(initialize.getSlotSymNames()[i]);
Value operand = initialize.getOperand(i);
auto globalSlot = SymbolTable::lookupNearestSymbolFrom<GlobalSlotOp>(
initialize, slotSymName);
auto symbolRefPoint =
solver.getLatticeAnchor<FlatSymbolRefLatticeAnchor>(globalSlot);
auto *state =
solver.lookupState<InlineGlobalSlotsAnalysisState>(symbolRefPoint);
// We roll the analysis of whether a slot is set or public into the
// main dataflow analysis, so we need to check the slot's
// FlatSymbolRefLatticeAnchor itself to see if it is safe to inline.
// For example, a public !torch.int is not safe to inline, even though
// it is a value-semantic type and so the actual initializer value
// itself is conceptually safe to inline.
if (!state->isSafe) {
continue;
}
// Check to see if the initializing value is safe to inline.
// This requires a transitive check of all subobjects.
// TODO: This would really be more logical to do as a forward dataflow
// analyis on the whole module initializer rather than doing the
// transitive check backward for each initial value. But it is just
// too much boilerplate to write that with the dataflow framework and we
// generally don't expect long transitive chains of values here -- most
// initial values are just single tensor literals.
if (isInitialValueTransitivelySafeToInline(operand, solver)) {
safeToInline.insert(slotSymName);
}
}
SymbolTable symbolTable(module);
DenseSet<Operation *> toErase;
module.walk([&](Torch::GlobalSlotGetOp op) {
if (!safeToInline.count(op.getSlotAttr()))
return;
// TODO: Make this more ergonomic.
auto it = llvm::find(initialize.getSlotSymNames(), op.getSlotAttr());
Value initialValue = initialize.getOperand(
std::distance(initialize.getSlotSymNames().begin(), it));
// It seems inefficient to get a backward slice again here, but we are
// going to be cloning the whole slice anyway, so it doesn't seem like a
// big deal.
SmallVector<Operation *> slice =
getBackwardSliceIncludingRoot(initialValue);
IRMapping mapping;
OpBuilder builder(op);
for (Operation *opInSlice : slice)
builder.clone(*opInSlice, mapping);
auto inlinedInitialValue = mapping.lookup(initialValue);
inlinedInitialValue = Torch::adjustStaticInformation(
builder, op.getLoc(), inlinedInitialValue, op.getType(),
/*userAllowsRefinement=*/false);
op.replaceAllUsesWith(inlinedInitialValue);
toErase.insert(op);
});
// Clean up after the transform.
// Erase any pending ops.
for (Operation *op : toErase)
op->erase();
// Erase any global slots that we inlined.
// This could be left to SymbolDCE but it's not hard to do here.
for (FlatSymbolRefAttr symName :
llvm::map_range(safeToInline, [](Attribute attr) {
return cast<FlatSymbolRefAttr>(attr);
})) {
auto globalSlot =
symbolTable.lookup<Torch::GlobalSlotOp>(symName.getValue());
globalSlot.erase();
}
// Update the initializer.
SmallVector<Attribute> newSlotSymNames;
SmallVector<Value> newInitialValues;
for (int i = 0, e = initialize.getNumOperands(); i != e; i++) {
auto slotSymName =
cast<FlatSymbolRefAttr>(initialize.getSlotSymNames()[i]);
if (!safeToInline.count(slotSymName)) {
newSlotSymNames.push_back(slotSymName);
newInitialValues.push_back(initialize.getOperand(i));
}
}
{
OpBuilder builder(initialize);
builder.create<Torch::InitializeGlobalSlotsOp>(
initialize.getLoc(),
ArrayAttr::get(module.getContext(), newSlotSymNames),
newInitialValues);
}
initialize.erase();
}
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>>
mlir::torch::Torch::createInlineGlobalSlotsPass() {
return std::make_unique<InlineGlobalSlotsPass>();
}