torch-mlir/lib/Dialect/Torch/Transforms/ScalarizeShapes.cpp

1202 lines
45 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Iterators.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
LogicalResult materializeFolds(ImplicitLocOpBuilder b,
ArrayRef<OpFoldResult> fold,
SmallVectorImpl<Value> &values) {
for (auto f : fold) {
if (auto val = dyn_cast<Value>(f)) {
values.push_back(val);
continue;
}
if (auto attr = dyn_cast<Attribute>(f)) {
if (auto val = dyn_cast<FloatAttr>(attr)) {
values.push_back(b.create<Torch::ConstantFloatOp>(
b.getType<Torch::FloatType>(), val));
continue;
}
if (auto val = dyn_cast<IntegerAttr>(attr)) {
values.push_back(
b.create<Torch::ConstantIntOp>(val.getValue().getSExtValue()));
continue;
}
}
return failure();
}
return success();
}
LogicalResult getListOperands(Value value, SmallVector<Value> &vals) {
auto list = value.getDefiningOp<Torch::PrimListConstructOp>();
if (!list)
return failure();
for (auto operand : list.getOperands())
vals.push_back(operand);
return success();
}
LogicalResult getListFromTensor(Value value, SmallVector<OpFoldResult> &vals) {
constexpr int64_t kMaxFold = 16;
if (auto tensor = value.getDefiningOp<Torch::AtenTensorOp>()) {
SmallVector<Value> unfolded;
LogicalResult gotList = getListOperands(tensor.getData(), unfolded);
vals = getAsOpFoldResult(unfolded);
return gotList;
}
if (auto full = value.getDefiningOp<Torch::AtenFullOp>()) {
auto ty = cast<ValueTensorType>(full.getType());
if (!ty.areAllSizesKnown() || ty.getSizes().size() != 1)
return failure();
if (ty.getSizes()[0] > kMaxFold)
return failure();
vals.resize(vals.size() + ty.getSizes()[0],
getAsOpFoldResult(full.getFillValue()));
return success();
}
if (auto unsqueeze = value.getDefiningOp<Torch::AtenUnsqueezeOp>()) {
Value usqSelf = unsqueeze.getSelf();
if (auto numToTensor =
usqSelf.getDefiningOp<Torch::PrimNumToTensorScalarOp>()) {
vals.push_back(getAsOpFoldResult(numToTensor.getA()));
return success();
}
}
// A common rank 0 tensor producer
if (auto numToTensor =
value.getDefiningOp<Torch::PrimNumToTensorScalarOp>()) {
vals.push_back(getAsOpFoldResult(numToTensor.getA()));
return success();
}
// Last supported case: ValueTensorLiteralOp
auto literalOp = value.getDefiningOp<Torch::ValueTensorLiteralOp>();
if (!literalOp)
return failure();
// Check the type.
auto ty = cast<ValueTensorType>(literalOp.getType());
if (!ty.hasSizes() || ty.getSizes().size() > 1)
return failure();
// make sure the type is not unsigned here before trying to materialize
auto intTy = dyn_cast_or_null<IntegerType>(ty.getDtype());
if (!intTy || intTy.isUnsigned())
return failure();
// if we have a rank 0 literal, we will be adding one element to the list
int64_t listSize = ty.getSizes().size() == 1 ? ty.getSizes().front() : 1;
if (listSize > kMaxFold)
return failure();
// check for a splat or dense attr
auto splattr = dyn_cast_or_null<SplatElementsAttr>(literalOp.getValue());
auto denseAttr = dyn_cast_or_null<DenseIntElementsAttr>(literalOp.getValue());
if (!splattr && !denseAttr)
return failure();
// These are not mutually exclusive, so try splat first.
if (splattr) {
auto attr = splattr.getSplatValue<Attribute>();
vals.resize((int64_t)vals.size() + listSize, attr);
return success();
}
// remaining case: denseAttr
if ((int64_t)denseAttr.getValues<Attribute>().size() != listSize)
return failure();
for (auto e : denseAttr.getValues<Attribute>())
vals.push_back(e);
return success();
}
Value constructAtenTensorOpFromList(ImplicitLocOpBuilder b, mlir::Type resultTy,
SmallVector<Value> &listValues) {
auto dimList = b.create<Torch::PrimListConstructOp>(
b.getType<Torch::ListType>(listValues.front().getType()), listValues);
Value cstNone = b.create<Torch::ConstantNoneOp>();
Value cstFalse = b.create<Torch::ConstantBoolOp>(b.getBoolAttr(false));
return b.create<Torch::AtenTensorOp>(resultTy, dimList, cstNone, cstNone,
cstFalse);
}
} // namespace
/// ------ Propagation Patterns ------ ///
// The general goal of these patterns is to convert SomeTensorOp to [scalarOps
// -> PrimListOfInts -> AtenTensorOp] Since these tensorized shape calculation
// ops are chained together, sequences like OpA -> OpB will propagate OpA first:
// [scalarOpsA -> ListA -> TensorA] -> OpB. Then OpB will be able to
// getListFromTensor(A), and further propagate scalarization.
namespace {
class PropagateAtenBroadcastToPattern
: public OpRewritePattern<AtenBroadcastToOp> {
public:
using OpRewritePattern<AtenBroadcastToOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenBroadcastToOp op,
PatternRewriter &rewriter) const override {
constexpr int64_t kMaxFold = 16;
// for tensor<si64>, or tensor<1xsi64>, broadcasted to tensor<nxsi64>, grab
// the element and convert to a full op.
auto ty = cast<ValueTensorType>(op.getType());
if (!ty.areAllSizesKnown() || ty.getSizes().size() != 1)
return failure();
if (ty.getSizes()[0] > kMaxFold)
return failure();
SmallVector<OpFoldResult> fillFold;
if (failed(getListFromTensor(op.getSelf(), fillFold)) ||
fillFold.size() != 1)
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
SmallVector<Value, 1> fillVals;
if (failed(materializeFolds(b, fillFold, fillVals)))
return failure();
Value size = b.create<Torch::ConstantIntOp>(ty.getSizes().front());
Value sizeList = b.create<Torch::PrimListConstructOp>(
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
size);
Value none = b.create<Torch::ConstantNoneOp>();
Value cstFalse = b.create<Torch::ConstantBoolOp>(false);
rewriter.replaceOpWithNewOp<AtenFullOp>(op, ty, sizeList, fillVals.front(),
none, none, none, cstFalse);
return success();
}
};
} // namespace
namespace {
class PropagateAtenShapeToTensorPattern
: public OpRewritePattern<Aten_ShapeAsTensorOp> {
public:
using OpRewritePattern<Aten_ShapeAsTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(Aten_ShapeAsTensorOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
auto self = op.getSelf();
auto selfTy = cast<BaseTensorType>(self.getType());
if (!selfTy.hasSizes())
return rewriter.notifyMatchFailure(op, "self has unknown rank");
int64_t rank = selfTy.getSizes().size();
SmallVector<OpFoldResult> dims;
for (int64_t i = 0; i < rank; ++i) {
auto iv = b.create<Torch::ConstantIntOp>(i);
dims.push_back(b.createOrFold<Torch::AtenSizeIntOp>(
rewriter.getType<Torch::IntType>(), self, iv));
}
SmallVector<Value> materializedDims;
if (failed(materializeFolds(b, dims, materializedDims))) {
return failure();
}
Value result =
constructAtenTensorOpFromList(b, op.getType(), materializedDims);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class PropagateAtenCatPattern : public OpRewritePattern<AtenCatOp> {
public:
using OpRewritePattern<AtenCatOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenCatOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
constexpr int64_t kMaxFold = 16;
auto resultTy = dyn_cast<ValueTensorType>(op.getType());
if (!resultTy.hasSizes() || resultTy.getSizes().size() != 1 ||
!resultTy.areAllSizesKnown())
return failure();
if (resultTy.getSizes().front() > kMaxFold)
return failure();
if (!resultTy.hasDtype())
return failure();
SmallVector<Value> tensors;
if (failed(getListOperands(op.getTensors(), tensors)))
return failure();
SmallVector<OpFoldResult> scalars;
for (auto element : tensors) {
llvm::SmallVector<OpFoldResult> delisted;
if (failed(getListFromTensor(element, delisted)))
return rewriter.notifyMatchFailure(op, "unknown op fold type");
for (auto scalar : delisted)
scalars.push_back(scalar);
}
SmallVector<Value> values;
if (failed(materializeFolds(b, scalars, values)) || values.empty())
return rewriter.notifyMatchFailure(op, "unable to materialize constants");
Value result = constructAtenTensorOpFromList(b, resultTy, values);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class PropagateAtenIndexSelectPattern
: public OpRewritePattern<AtenIndexSelectOp> {
public:
using OpRewritePattern<AtenIndexSelectOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenIndexSelectOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
SmallVector<OpFoldResult> elements;
if (failed(getListFromTensor(op.getSelf(), elements)))
return failure();
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(op, "requires a constant dim");
SmallVector<OpFoldResult> idxFolds;
if (failed(getListFromTensor(op.getIndex(), idxFolds)))
return rewriter.notifyMatchFailure(op, "requires a constant index");
auto selfTy = cast<BaseTensorType>(op.getSelf().getType());
if (!selfTy.hasSizes())
return rewriter.notifyMatchFailure(op, "requires known rank");
auto selfShape = selfTy.getSizes();
int64_t selfRank = selfShape.size();
dim = dim < 0 ? dim + selfRank : dim;
int64_t dimLength = elements.size();
if (selfShape[dim] != dimLength)
return rewriter.notifyMatchFailure(
op, "dim length does not match number of elements");
for (int64_t i = 0; i < selfRank; ++i) {
if (i == dim)
continue;
if (selfShape[i] != 1)
return rewriter.notifyMatchFailure(op,
"expects unary non-dim dimension");
}
SmallVector<OpFoldResult> selected;
for (auto idx : idxFolds) {
auto attr = dyn_cast_or_null<IntegerAttr>(dyn_cast<Attribute>(idx));
if (!attr)
return failure();
int64_t indexInt = attr.getValue().getSExtValue();
indexInt = indexInt < 0 ? indexInt + dimLength : indexInt;
if (indexInt < 0 || indexInt >= dimLength)
return failure();
selected.push_back(elements[indexInt]);
}
SmallVector<Value> materializedSelected;
if (failed(materializeFolds(b, selected, materializedSelected)))
return failure();
Value result =
constructAtenTensorOpFromList(b, op.getType(), materializedSelected);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
// Conversion attempts to handle some common propagatable slice cases, namely
// splatted values, no-op slices, known list of values, or any case where a
// new construction can be generated from a previous set of scalars allowing
// the parent tensor to be bypassed.
class PropagateAtenSliceTensorPattern
: public OpRewritePattern<AtenSliceTensorOp> {
public:
using OpRewritePattern<AtenSliceTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenSliceTensorOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
ImplicitLocOpBuilder b(loc, rewriter);
SmallVector<OpFoldResult> elements;
if (failed(getListFromTensor(op.getSelf(), elements)))
return failure();
int64_t dim, start, end, step;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return rewriter.notifyMatchFailure(op, "requires a constant dim");
if (!matchPattern(op.getStart(), m_TorchConstantInt(&start)))
return rewriter.notifyMatchFailure(op, "requires a constant start");
if (!matchPattern(op.getEnd(), m_TorchConstantInt(&end)))
return rewriter.notifyMatchFailure(op, "requires a constant end");
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step)))
return rewriter.notifyMatchFailure(op, "requires a constant step");
if (step < 0)
return rewriter.notifyMatchFailure(op, "requires a positive step value");
auto selfTy = cast<BaseTensorType>(op.getSelf().getType());
auto selfShape = selfTy.getSizes();
int64_t selfRank = selfShape.size();
// Correct for negative indexing:
dim = dim < 0 ? dim + selfRank : dim;
int64_t dimLength = elements.size();
start = start < 0 ? start + dimLength : start;
end = end < 0 ? end + dimLength : end;
start = start < 0 ? 0 : start;
end = end < 0 ? 0 : end;
end = end > dimLength ? dimLength : end;
if (selfShape[dim] != dimLength)
return rewriter.notifyMatchFailure(
op, "dim length does not match number of elements");
for (int64_t i = 0; i < selfRank; ++i) {
if (i == dim)
continue;
if (selfShape[i] != 1)
return rewriter.notifyMatchFailure(op,
"expects unary non-dim dimension");
}
SmallVector<OpFoldResult> selected;
for (int i = start; i < end; i += step)
selected.push_back(elements[i]);
SmallVector<Value> values;
if (failed(materializeFolds(b, selected, values)))
return failure();
Value result = constructAtenTensorOpFromList(b, op.getType(), values);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class PropagateAtenWhereSelfPattern : public OpRewritePattern<AtenWhereSelfOp> {
public:
using OpRewritePattern<AtenWhereSelfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenWhereSelfOp op,
PatternRewriter &rewriter) const override {
Value condition = op.getCondition();
Value self = op.getSelf();
Value other = op.getOther();
auto conditionTy = dyn_cast<Torch::ValueTensorType>(condition.getType());
if (!conditionTy || !conditionTy.hasSizes() ||
conditionTy.getSizes().size() != 1)
return rewriter.notifyMatchFailure(op, "bad condition type");
auto selfTy = dyn_cast<Torch::ValueTensorType>(self.getType());
if (!selfTy || !selfTy.hasSizes() || selfTy.getSizes().size() != 1)
return rewriter.notifyMatchFailure(op, "bad self type");
auto otherTy = dyn_cast<Torch::ValueTensorType>(other.getType());
if (!otherTy || !otherTy.hasSizes() || otherTy.getSizes().size() != 1)
return rewriter.notifyMatchFailure(op, "bad other type");
int64_t conditionSize = selfTy.getSizes()[0];
int64_t selfSize = selfTy.getSizes()[0];
int64_t otherSize = otherTy.getSizes()[0];
if (selfSize != otherSize || selfSize != conditionSize)
return rewriter.notifyMatchFailure(
op,
"unimplemented: support for propogating with implicit broadcasting.");
constexpr int64_t kMaxFold = 16;
if (selfSize == Torch::kUnknownSize || selfSize > kMaxFold)
return rewriter.notifyMatchFailure(op,
"arguments are dynamic or too big");
SmallVector<OpFoldResult> conditionFolds, selfFolds, otherFolds;
if (failed(getListFromTensor(condition, conditionFolds)) ||
failed(getListFromTensor(self, selfFolds)) ||
failed(getListFromTensor(other, otherFolds)))
return failure();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
SmallVector<Value> conditionList, selfList, otherList;
if (failed(materializeFolds(b, conditionFolds, conditionList)) ||
failed(materializeFolds(b, selfFolds, selfList)) ||
failed(materializeFolds(b, otherFolds, otherList)))
return failure();
SmallVector<Value> whereVals;
auto rank0IntTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({}), selfTy.getDtype());
auto rank0BoolTy = rewriter.getType<Torch::ValueTensorType>(
ArrayRef<int64_t>({}), conditionTy.getDtype());
for (uint64_t i = 0; i < selfList.size(); i++) {
Value rank0Cond = b.create<Torch::PrimNumToTensorScalarOp>(
rank0BoolTy, conditionList[i]);
Value rank0Self =
b.create<Torch::PrimNumToTensorScalarOp>(rank0IntTy, selfList[i]);
Value rank0Other =
b.create<Torch::PrimNumToTensorScalarOp>(rank0IntTy, otherList[i]);
Value rank0Where = b.create<AtenWhereSelfOp>(rank0IntTy, rank0Cond,
rank0Self, rank0Other);
whereVals.push_back(
b.create<AtenItemOp>(rewriter.getType<Torch::IntType>(), rank0Where));
}
Value result = constructAtenTensorOpFromList(b, op.getType(), whereVals);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class PropagateAtenEqTensorPattern : public OpRewritePattern<AtenEqTensorOp> {
public:
using OpRewritePattern<AtenEqTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenEqTensorOp op,
PatternRewriter &rewriter) const override {
Value self = op.getSelf();
Value other = op.getOther();
auto selfTy = dyn_cast<Torch::ValueTensorType>(self.getType());
if (!selfTy || !selfTy.hasSizes() || selfTy.getSizes().size() != 1)
return rewriter.notifyMatchFailure(op, "bad self type");
auto otherTy = dyn_cast<Torch::ValueTensorType>(other.getType());
if (!otherTy || !otherTy.hasSizes() || otherTy.getSizes().size() != 1)
return rewriter.notifyMatchFailure(op, "bad other type");
int64_t selfSize = selfTy.getSizes()[0];
int64_t otherSize = otherTy.getSizes()[0];
if (selfSize != otherSize)
return rewriter.notifyMatchFailure(
op,
"unimplemented: support for propogating with implicit broadcasting.");
constexpr int64_t kMaxFold = 16;
if (selfSize == Torch::kUnknownSize || selfSize > kMaxFold ||
otherSize == Torch::kUnknownSize || otherSize > kMaxFold)
return rewriter.notifyMatchFailure(op,
"self or other is dynamic or too big");
SmallVector<OpFoldResult> selfFolds, otherFolds;
if (failed(getListFromTensor(self, selfFolds)) ||
failed(getListFromTensor(other, otherFolds)))
return rewriter.notifyMatchFailure(op, "failed to get list from tensor");
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
SmallVector<Value> selfList, otherList;
if (failed(materializeFolds(b, selfFolds, selfList)) ||
failed(materializeFolds(b, otherFolds, otherList)))
return rewriter.notifyMatchFailure(op, "failed to materialize folds");
SmallVector<OpFoldResult> eqBoolFolds;
for (uint64_t i = 0; i < selfList.size(); i++) {
OpFoldResult eqInt =
b.createOrFold<AtenEqIntOp>(selfList[i], otherList[i]);
if (auto eqIntVal = dyn_cast<Value>(eqInt))
eqInt = b.createOrFold<AtenIntBoolOp>(eqIntVal);
// if eqInt was an Attribute, it will materialize to a constant int op,
// which is what we want.
eqBoolFolds.push_back(eqInt);
}
SmallVector<Value> eqVals;
if (failed(materializeFolds(b, eqBoolFolds, eqVals))) {
return failure();
}
Value result = constructAtenTensorOpFromList(b, op.getType(), eqVals);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
namespace {
class PropagateAtenItemPattern : public OpRewritePattern<AtenItemOp> {
public:
using OpRewritePattern<AtenItemOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenItemOp op,
PatternRewriter &rewriter) const override {
SmallVector<OpFoldResult> elements;
Value self = op.getSelf();
auto selfTy = cast<ValueTensorType>(self.getType());
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Rank 0 item op prop
if (selfTy.getSizes().size() == 0) {
auto numToTensor = self.getDefiningOp<Torch::PrimNumToTensorScalarOp>();
auto squeezeDim = self.getDefiningOp<AtenSqueezeDimOp>();
if (!squeezeDim && !numToTensor)
return rewriter.notifyMatchFailure(op,
"unhandled item of rank 0 operand");
if (numToTensor) {
rewriter.replaceOp(op, numToTensor.getA());
return success();
}
rewriter.replaceOpWithNewOp<AtenItemOp>(op, op.getType(),
squeezeDim.getSelf());
return success();
}
// Rank 1 item op prop
if (failed(getListFromTensor(op.getSelf(), elements)))
return failure();
if (elements.size() != 1)
return rewriter.notifyMatchFailure(op, "expected one element");
SmallVector<Value, 1> materialized;
if (failed(materializeFolds(b, elements, materialized)))
return failure();
rewriter.replaceOp(op, materialized.front());
return success();
}
};
} // namespace
namespace {
template <typename OpTy> struct ArithmeticHelper {
static LogicalResult getAlphaAndVerify(OpTy &op, int64_t &alpha) {
alpha = 1;
return success();
}
};
template <> struct ArithmeticHelper<AtenAddTensorOp> {
static LogicalResult getAlphaAndVerify(AtenAddTensorOp &op, int64_t &alpha) {
if (!matchPattern(op.getAlpha(), m_TorchConstantInt(&alpha)) || alpha != 1)
return failure();
return success();
}
};
template <> struct ArithmeticHelper<AtenSubTensorOp> {
static LogicalResult getAlphaAndVerify(AtenSubTensorOp &op, int64_t &alpha) {
if (!matchPattern(op.getAlpha(), m_TorchConstantInt(&alpha)) || alpha != 1)
return failure();
return success();
}
};
template <typename OpTy, typename ScalarOpTy>
class PropagateAtenArithmeticPattern : public OpRewritePattern<OpTy> {
public:
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy op,
PatternRewriter &rewriter) const override {
// Check type
auto resultTy = cast<ValueTensorType>(op.getType());
if (resultTy.getSizes().size() > 1)
return rewriter.notifyMatchFailure(op, "unsupported: rank > 1");
if (!resultTy.hasDtype() || !isa<mlir::IntegerType>(resultTy.getDtype()))
return rewriter.notifyMatchFailure(op, "not an int type");
int64_t alpha;
if (failed(ArithmeticHelper<OpTy>::getAlphaAndVerify(op, alpha)))
return rewriter.notifyMatchFailure(op, "alpha must be 1");
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
SmallVector<OpFoldResult> selfFold, otherFold;
if (failed(getListFromTensor(op.getSelf(), selfFold)) ||
failed(getListFromTensor(op.getOther(), otherFold)) ||
selfFold.size() != otherFold.size())
return failure();
SmallVector<Value> selfVals, otherVals;
if (failed(materializeFolds(b, selfFold, selfVals)) ||
failed(materializeFolds(b, otherFold, otherVals)))
return failure();
SmallVector<OpFoldResult> resultFolds;
for (uint64_t i = 0; i < selfVals.size(); i++) {
resultFolds.push_back(b.createOrFold<ScalarOpTy>(
selfVals[i].getType(), selfVals[i], otherVals[i]));
}
SmallVector<Value> resultVals;
if (failed(materializeFolds(b, resultFolds, resultVals)))
return failure();
if (resultTy.getSizes().size() == 0) {
rewriter.replaceOpWithNewOp<Torch::PrimNumToTensorScalarOp>(
op, resultTy, resultVals.front());
return success();
}
Value result = constructAtenTensorOpFromList(b, resultTy, resultVals);
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
/// ------ Fold Patterns ------ ///
// These are shape-specific folding patterns
namespace {
class FoldAtenEqIntPattern : public OpRewritePattern<AtenEqIntOp> {
public:
using OpRewritePattern<AtenEqIntOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenEqIntOp op,
PatternRewriter &rewriter) const override {
// replaces (size.int == 0) with false and adds an assert
// these comparisons are getting generated because onnx.Reshape considers 0
// to mean "don't change this dim". However, if the size we are passing to
// onnx.Reshape is a tensor dim, this is definitely never supposed to be
// interpreted as "don't change this dim".
int64_t otherInt;
if (!matchPattern(op.getB(), m_TorchConstantInt(&otherInt)) ||
otherInt != 0)
return failure();
// in case the shape is a product of two ints, check each
if (auto mulOp = op.getA().getDefiningOp<AtenMulIntOp>()) {
Value self = mulOp.getA();
Value other = mulOp.getB();
Value selfEq = rewriter.create<AtenEqIntOp>(op.getLoc(), self, op.getB());
Value otherEq =
rewriter.create<AtenEqIntOp>(op.getLoc(), other, op.getB());
rewriter.replaceOpWithNewOp<Aten__Or__BoolOp>(op, selfEq, otherEq);
return success();
}
// if lhs is size.int op, assert size > 0 and replace with false.
if (auto sizeOp = op.getA().getDefiningOp<AtenSizeIntOp>()) {
Value selfGtOther = rewriter.create<AtenGtIntOp>(
op.getLoc(), op.getType(), op.getA(), op.getB());
rewriter.create<Torch::RuntimeAssertOp>(
op.getLoc(), selfGtOther,
rewriter.getStringAttr("Expected dim size > 0."));
Value cstFalse =
rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
rewriter.replaceOp(op, cstFalse);
return success();
}
return failure();
}
};
} // namespace
namespace {
class FoldAtenTensorSplatPattern : public OpRewritePattern<AtenTensorOp> {
public:
using OpRewritePattern<AtenTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenTensorOp op,
PatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
SmallVector<Value> elements;
if (failed(getListOperands(op.getData(), elements)))
return failure();
if (elements.size() < 1)
return rewriter.notifyMatchFailure(op, "no elements");
auto front = elements.front();
for (auto element : elements)
if (element != front)
return rewriter.notifyMatchFailure(op, "multiple elements found");
if (elements.size() != 1)
return rewriter.notifyMatchFailure(op, "expected no elements");
auto resultTy = cast<BaseTensorType>(op.getType());
if (!resultTy.hasSizes() || !resultTy.areAllSizesKnown())
return rewriter.notifyMatchFailure(op, "dynamic output shape");
auto loc = op.getLoc();
SmallVector<Value> sizes;
for (auto size : resultTy.getSizes())
sizes.push_back(rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(size)));
Value one = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getType<Torch::IntType>(), 1);
Value sizeList = rewriter.create<Torch::PrimListConstructOp>(
loc,
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
one);
Value none = rewriter.create<Torch::ConstantNoneOp>(loc);
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
rewriter.replaceOpWithNewOp<AtenFullOp>(
op, resultTy, sizeList, elements.front(), none, none, none, cstFalse);
return success();
}
};
} // namespace
namespace {
template <typename SqueezeOp>
class FoldAtenSqueezePattern : public OpRewritePattern<SqueezeOp> {
public:
using OpRewritePattern<SqueezeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SqueezeOp op,
PatternRewriter &rewriter) const override {
auto resultTy = cast<ValueTensorType>(op.getType());
if (!resultTy.hasSizes() || !resultTy.areAllSizesKnown())
return rewriter.notifyMatchFailure(op, "Unknown result shape");
Value self = op.getSelf();
if (auto atenFull = self.getDefiningOp<AtenFullOp>()) {
// in the rank 0 case, just return the rank 0 scalar
if (resultTy.getSizes().size() == 0) {
rewriter.replaceOpWithNewOp<Torch::PrimNumToTensorScalarOp>(
op, resultTy, atenFull.getFillValue());
return success();
}
SmallVector<Value> sizes;
for (int i = 0, s = resultTy.getSizes().size(); i < s; ++i)
sizes.push_back(rewriter.create<Torch::ConstantIntOp>(
op.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(i)));
Value sizeList = rewriter.create<Torch::PrimListConstructOp>(
op.getLoc(),
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
sizes);
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(op, resultTy, sizeList,
atenFull.getFillValue(),
none, none, none, none);
return success();
}
return failure();
}
};
} // namespace
namespace {
class FoldAtenWhereSelf : public OpRewritePattern<AtenWhereSelfOp> {
public:
using OpRewritePattern<AtenWhereSelfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenWhereSelfOp op,
PatternRewriter &rewriter) const override {
auto getRoot = [](Value v) {
while (true) {
if (auto numToTensor =
v.getDefiningOp<Torch::PrimNumToTensorScalarOp>()) {
v = numToTensor.getA();
continue;
}
break;
}
return v;
};
auto self = getRoot(op.getSelf());
auto other = getRoot(op.getOther());
if (self == other) {
rewriter.replaceOp(op, op.getSelf());
return success();
}
auto selfSize = self.getDefiningOp<Torch::AtenSizeIntOp>();
auto otherSize = other.getDefiningOp<Torch::AtenSizeIntOp>();
if (selfSize && otherSize) {
if (selfSize.getSelf() != otherSize.getSelf())
return rewriter.notifyMatchFailure(op, "sizes not of same tensor");
int64_t dimSelf, dimOther;
if ((selfSize.getDim() != otherSize.getDim()) &&
(!matchPattern(selfSize.getDim(), m_TorchConstantInt(&dimSelf)) ||
!matchPattern(otherSize.getDim(), m_TorchConstantInt(&dimOther)) ||
(dimSelf != dimOther)))
return rewriter.notifyMatchFailure(op, "sizes not of same dim");
rewriter.replaceOp(op, op.getSelf());
return success();
}
return rewriter.notifyMatchFailure(op, "unable to fold");
}
};
} // namespace
namespace {
class FoldAtenUnsqueezePattern : public OpRewritePattern<AtenUnsqueezeOp> {
public:
using OpRewritePattern<AtenUnsqueezeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenUnsqueezeOp op,
PatternRewriter &rewriter) const override {
auto resultTy = cast<ValueTensorType>(op.getType());
if (!resultTy.hasSizes() || !resultTy.areAllSizesKnown())
return rewriter.notifyMatchFailure(op, "Unknown result shape");
if (auto atenFull = op.getSelf().getDefiningOp<AtenFullOp>()) {
SmallVector<Value> sizes;
for (int i = 0, s = resultTy.getSizes().size(); i < s; ++i)
sizes.push_back(rewriter.create<Torch::ConstantIntOp>(
op.getLoc(), rewriter.getType<Torch::IntType>(),
rewriter.getI64IntegerAttr(i)));
Value sizeList = rewriter.create<Torch::PrimListConstructOp>(
op.getLoc(),
rewriter.getType<Torch::ListType>(rewriter.getType<Torch::IntType>()),
sizes);
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(op, resultTy, sizeList,
atenFull.getFillValue(),
none, none, none, none);
return success();
}
auto squeezeOp = op.getSelf().getDefiningOp<AtenSqueezeDimOp>();
if (squeezeOp && resultTy.getSizes().size() == 1) {
rewriter.replaceOp(op, squeezeOp.getSelf());
return success();
}
return failure();
}
};
} // namespace
/// ------ Canonicalization Patterns ------ ///
namespace {
// This is a specific pattern for converting views like [?,...,?,lastDim] ->
// [?,...,?,factor0,factor1] to unflatten, and views like
// [?,...,?,factor0,factor1] -> [?,...,?,lastDim] to flatten, whenever it is
// possible to infer that all but last shared dim match
// TODO: move this to an actual canonicalizer for view after deleting the
// conflicting decompositions for flatten/unflatten -> view.
class CanonicalizeAtenViewPattern : public OpRewritePattern<AtenViewOp> {
public:
using OpRewritePattern<AtenViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AtenViewOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value> viewSizes;
if (failed(getListOperands(op.getSize(), viewSizes)))
return rewriter.notifyMatchFailure(
op, "view size must be from a list construct");
auto selfTy = dyn_cast<Torch::ValueTensorType>(op.getSelf().getType());
if (!selfTy || !selfTy.hasSizes())
return rewriter.notifyMatchFailure(op, "missing input type or sizes");
auto resultTy = dyn_cast<Torch::ValueTensorType>(op.getType());
if (!resultTy || !resultTy.hasSizes() ||
resultTy.getSizes().size() != viewSizes.size())
return rewriter.notifyMatchFailure(op, "missing result type or sizes");
int64_t inRank = selfTy.getSizes().size();
int64_t outRank = resultTy.getSizes().size();
SmallVector<int64_t> sizes(selfTy.getSizes());
int64_t endMatchingDim = -1;
// input sizes vs. provided view sizes comparison loop
for (int64_t i = 0; i < std::min(outRank, inRank); i++) {
int64_t providedSize;
bool providedStatic =
matchPattern(viewSizes[i], m_TorchConstantInt(&providedSize));
// if sizes[i] is static, it must match a constant in viewSizes[i]
if (sizes[i] != Torch::kUnknownSize) {
if (!providedStatic)
return rewriter.notifyMatchFailure(
op, "unsupported: found static input dim, but unable to match "
"provided view size on a constant. See position : " +
std::to_string(i));
if (providedSize != sizes[i]) {
endMatchingDim = i;
break;
}
continue;
}
// the remaining assumes sizes[i] is dynamic
// if provided dim is static, we can't verify it is a flatten/unflatten
// unless -1
if (i == outRank - 1 && providedStatic && providedSize == -1) {
endMatchingDim = i;
break;
}
if (providedStatic)
return rewriter.notifyMatchFailure(
op, "unexpected static view dim corresponding to dynamic input dim "
"at position : " +
std::to_string(i));
auto sizeIntOp = viewSizes[i].getDefiningOp<AtenSizeIntOp>();
// if we don't have a size int op on self, fail
if (!sizeIntOp || sizeIntOp.getSelf() != op.getSelf())
return rewriter.notifyMatchFailure(
op, "expected dynamic view dim to come from a corresponding "
"size.int op. See position : " +
std::to_string(i));
int64_t dim;
// if the dim of the size int op doesn't match, fail
if (!matchPattern(sizeIntOp.getDim(), m_TorchConstantInt(&dim)) ||
dim != i)
return rewriter.notifyMatchFailure(
op,
"size int op dim cannot be matched to current dim at position : " +
std::to_string(i));
// passing the previous checks means viewSizes[i] = aten.size.int(self,
// i), so continue
}
// if all dims match and the ranks are equal, fold
if (endMatchingDim == -1 && inRank == outRank) {
rewriter.replaceOp(op, op.getSelf());
return success();
}
if (endMatchingDim > -1 && inRank > outRank) {
// only support flattening last dim
if (endMatchingDim != outRank - 1)
return rewriter.notifyMatchFailure(
op, "unimplemented: output has more than back dim mismatching");
// flatten
Value start =
rewriter.create<Torch::ConstantIntOp>(op.getLoc(), endMatchingDim);
Value end =
rewriter.create<Torch::ConstantIntOp>(op.getLoc(), inRank - 1);
rewriter.replaceOpWithNewOp<AtenFlattenUsingIntsOp>(
op, resultTy, op.getSelf(), start, end);
return success();
}
if (endMatchingDim > -1 && inRank < outRank) {
// only support unflattening last dim
if (endMatchingDim != inRank - 1)
return rewriter.notifyMatchFailure(
op, "unimplemented: input has more than back dim mismatching");
// unflatten
Value dim =
rewriter.create<Torch::ConstantIntOp>(op.getLoc(), endMatchingDim);
Value primList = rewriter.create<Torch::PrimListConstructOp>(
op.getLoc(), op.getSize().getType(),
ArrayRef<Value>(viewSizes.begin() + endMatchingDim, viewSizes.end()));
rewriter.replaceOpWithNewOp<AtenUnflattenIntOp>(
op, resultTy, op.getSelf(), dim, primList);
return success();
}
// examples that might reach this:
// input shape = [10, 5]; view sizes = [5, 10] (or dynamic variants)
// input shape = [dim0, dim1]; view sizes = [dim0, dim1, 1, 1] (unsqueezes)
// input shape = [dim0, dim1, 1, 1] view sizes = [dim0, dim1] (squeezes)
return rewriter.notifyMatchFailure(
op, "unhandled case: endMatchingDim=" + std::to_string(endMatchingDim) +
", inRank=" + std::to_string(inRank) +
", outRank=" + std::to_string(outRank));
}
};
} // namespace
namespace {
template <typename T> class RemoveUnusedPattern : public OpRewritePattern<T> {
public:
using OpRewritePattern<T>::OpRewritePattern;
LogicalResult matchAndRewrite(T op,
PatternRewriter &rewriter) const override {
for (auto use : op->getResults())
if (!use.use_empty())
return failure();
rewriter.eraseOp(op);
return success();
}
};
} // namespace
namespace {
bool isSourceOpForShapeScalarization(Operation *op) {
return llvm::isa<AtenSizeIntOp, Torch::ConstantIntOp, Torch::ConstantBoolOp,
Aten_ShapeAsTensorOp, Torch::ValueTensorLiteralOp>(op);
}
bool isPrimListOfInts(Operation *op) {
auto primListOp = dyn_cast<Torch::PrimListConstructOp>(op);
if (!primListOp)
return false;
auto listType = dyn_cast<Torch::ListType>(primListOp.getType());
if (!listType)
return false;
return llvm::isa<Torch::IntType>(listType.getContainedType());
}
bool isAnchorOp(Operation *op) {
return isa<Torch::RuntimeAssertOp>(op) || isa<AtenArangeStartStepOp>(op) ||
isPrimListOfInts(op);
}
void populateScalarizationFoldPatterns(RewritePatternSet &patterns) {
patterns.insert<FoldAtenSqueezePattern<AtenSqueezeOp>,
FoldAtenSqueezePattern<AtenSqueezeDimOp>,
FoldAtenUnsqueezePattern, FoldAtenWhereSelf,
FoldAtenTensorSplatPattern, FoldAtenEqIntPattern>(
patterns.getContext());
}
void populateScalarizationCanonicalizePatterns(RewritePatternSet &patterns) {
patterns.add<CanonicalizeAtenViewPattern>(patterns.getContext());
}
void populateScalarizationPropagationPatterns(RewritePatternSet &patterns) {
// A note on division: onnx.Div from int, int -> int types rounds towards
// zero. The torch DivTensorOp actually doesn't allow returning an int dtype,
// but this was artificially plummbed through. Unfortunately, there is no
// scalar trunc div op in torch; however, we can safely assume all operands
// are positive so floor divide should be a sufficient scalar replacement.
patterns.insert<
PropagateAtenCatPattern, PropagateAtenIndexSelectPattern,
PropagateAtenItemPattern, PropagateAtenShapeToTensorPattern,
PropagateAtenSliceTensorPattern, PropagateAtenEqTensorPattern,
PropagateAtenWhereSelfPattern, PropagateAtenBroadcastToPattern,
PropagateAtenArithmeticPattern<AtenAddTensorOp, AtenAddIntOp>,
PropagateAtenArithmeticPattern<AtenSubTensorOp, AtenSubIntOp>,
PropagateAtenArithmeticPattern<AtenMulTensorOp, AtenMulIntOp>,
PropagateAtenArithmeticPattern<AtenDivTensorOp, AtenFloordivIntOp>>(
patterns.getContext());
}
void populateScalarizationRemovePatterns(RewritePatternSet &patterns) {
patterns.insert<RemoveUnusedPattern<Torch::AtenIntBoolOp>,
RemoveUnusedPattern<Torch::AtenEqIntOp>,
RemoveUnusedPattern<Torch::PrimNumToTensorScalarOp>,
RemoveUnusedPattern<Torch::AtenFullOp>,
RemoveUnusedPattern<Torch::AtenUnsqueezeOp>,
RemoveUnusedPattern<Torch::AtenSqueezeDimOp>,
RemoveUnusedPattern<Torch::AtenSizeIntOp>,
RemoveUnusedPattern<Torch::AtenSliceTensorOp>,
RemoveUnusedPattern<Torch::AtenTensorOp>,
RemoveUnusedPattern<Torch::ConstantBoolOp>,
RemoveUnusedPattern<Torch::ConstantIntOp>,
RemoveUnusedPattern<Torch::ConstantNoneOp>,
RemoveUnusedPattern<Torch::PrimListConstructOp>>(
patterns.getContext());
}
} // namespace
namespace {
class ScalarizeShapesPass : public ScalarizeShapesBase<ScalarizeShapesPass> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<arith::ArithDialect>();
}
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
// populate patterns
populateScalarizationPropagationPatterns(patterns);
populateScalarizationFoldPatterns(patterns);
populateScalarizationCanonicalizePatterns(patterns);
populateScalarizationRemovePatterns(patterns);
context->getLoadedDialect<mlir::arith::ArithDialect>()
->getCanonicalizationPatterns(patterns);
// don't load torch canonicalization patterns, since these may lead to
// issues with propagation
// walk func op bottom-up to collect a SetVector of shape-related operations
// When we pass this SetVector to the pattern rewrite driver, it will
// process the operations top-down, thereby propagating scalarization
// starting from sources.
auto funcOp = getOperation();
llvm::SetVector<Operation *> shapeCalculationOps;
funcOp.walk<WalkOrder::PostOrder, mlir::ReverseIterator>(
[&](Operation *op) {
// Walking bottom-up, start adding ops when we reach an anchor point
// (a prim list of ints)
if (isAnchorOp(op)) {
shapeCalculationOps.insert(op);
return;
}
// add view ops for now until the decompositions for flatten and
// unflatten are removed.
if (isa<AtenViewOp>(op)) {
shapeCalculationOps.insert(op);
return;
}
// Insert the op if any of it's consumers have already been identified
// as a shape calculation op. To avoid adding the producer of
// something like a size.int op, don't add ops when their consumer is
// a source op for shape scalarization. Here is some sample IR:
// ------
// %0 = aten.matmul %arg0, %arg1 : ... -> !torch.vtensor<[?,?,?],f32>
// %1 = aten.size.int %0, %int0 : !torch.int
// %2 = prim.ListConstruct %1 : (!torch.int) -> !torch.list<int>
// return %2 : !torch.list<int>
// ------
// In this example, don't add the matmul (%0), or it's producers, to
// shapeCalculationOps. It's consumer (%1) is indeed a shape
// calculation op, but the size.int op is an elementary unit of shape
// computation. No futher gathering of producers is necessary to
// reduce this. Similarly, don't add the `self` of a view op.
for (OpOperand &use : op->getUses()) {
Operation *userOp = use.getOwner();
if (shapeCalculationOps.contains(userOp) &&
!isSourceOpForShapeScalarization(userOp) &&
!isa<AtenViewOp>(userOp)) {
shapeCalculationOps.insert(op);
return;
}
}
});
GreedyRewriteConfig config;
// When propagating, we need to go back and clean up aten.Tensor ops that
// have been futher propagated. It is also necessary to add newly created
// ops for custom folding after scalarizing a where.self op.
config.strictMode = GreedyRewriteStrictness::ExistingAndNewOps;
if (failed(applyOpPatternsAndFold(shapeCalculationOps.getArrayRef(),
std::move(patterns), config))) {
return signalPassFailure();
}
// TODO: Warn when failing to process operations in the worklist.
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::torch::Torch::createScalarizeShapesPass() {
return std::make_unique<ScalarizeShapesPass>();
}