torch-mlir/lib/Dialect/Torch/Utils/Utils.cpp

661 lines
27 KiB
C++

//===----------------------------------------------------------------------===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "mlir/IR/BuiltinDialect.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
#include "torch-mlir/Dialect/Torch/Utils/SparsityUtils.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
int64_t Torch::toPositiveDim(int64_t dim, int64_t inputRank) {
return dim >= 0 ? dim : dim + inputRank;
}
bool Torch::isValidDim(int64_t dim, int64_t inputRank) {
return dim >= 0 && dim < inputRank;
}
std::optional<int64_t>
Torch::matchLegalConstantIndexIntoListOfSize(Value v, int64_t length) {
int64_t dim;
if (!matchPattern(v, m_TorchConstantInt(&dim)))
return std::nullopt;
dim = toPositiveDim(dim, length);
if (!isValidDim(dim, length))
return std::nullopt;
return dim;
}
bool Torch::getListConstructElements(Value v, SmallVectorImpl<Value> &elems) {
auto listConstruct = v.getDefiningOp<PrimListConstructOp>();
if (!listConstruct)
return false;
elems = llvm::to_vector<4>(listConstruct.getElements());
return true;
}
torch_upstream::ScalarType Torch::getScalarTypeForType(Type type) {
if (isa<Float32Type>(type))
return torch_upstream::ScalarType::Float;
if (isa<Float64Type>(type))
return torch_upstream::ScalarType::Double;
if (type.isSignedInteger(64))
return torch_upstream::ScalarType::Long;
if (type.isSignedInteger(32))
return torch_upstream::ScalarType::Int;
if (type.isSignedInteger(16))
return torch_upstream::ScalarType::Short;
if (type.isSignlessInteger(1))
return torch_upstream::ScalarType::Bool;
if (type.isBF16())
return torch_upstream::ScalarType::BFloat16;
if (type.isF16())
return torch_upstream::ScalarType::Half;
if (type.isUnsignedInteger(8))
return torch_upstream::ScalarType::Byte;
if (type.isSignedInteger(8))
return torch_upstream::ScalarType::Char;
if (isa<QUInt8Type>(type))
return torch_upstream::ScalarType::QUInt8;
if (isa<QInt8Type>(type))
return torch_upstream::ScalarType::QInt8;
if (isa<QInt16Type>(type))
return torch_upstream::ScalarType::QInt16;
if (isa<QInt32Type>(type))
return torch_upstream::ScalarType::QInt32;
if (isa<ComplexType>(type)) {
mlir::Type complexElemType = cast<ComplexType>(type).getElementType();
if (complexElemType.isF16())
return torch_upstream::ScalarType::ComplexHalf;
if (complexElemType.isF32())
return torch_upstream::ScalarType::ComplexFloat;
if (complexElemType.isF64())
return torch_upstream::ScalarType::ComplexDouble;
}
if (isa<Float8E5M2Type>(type))
return torch_upstream::ScalarType::Float8_e5m2;
if (isa<Float8E4M3FNType>(type))
return torch_upstream::ScalarType::Float8_e4m3fn;
if (isa<Float8E5M2FNUZType>(type))
return torch_upstream::ScalarType::Float8_e5m2fnuz;
if (isa<Float8E4M3FNUZType>(type))
return torch_upstream::ScalarType::Float8_e4m3fnuz;
std::string errorMsg = "Unhandled type in getScalarTypeForType: ";
llvm::raw_string_ostream os(errorMsg);
type.print(os);
// os << "\nType ID: " << type.getTypeID();
os << "\nType properties:";
os << "\n Is integer: " << (type.isInteger() ? "yes" : "no");
os << "\n Is float: "
<< (type.isIntOrFloat() && !type.isInteger() ? "yes" : "no");
os << "\n Is index: " << (type.isIndex() ? "yes" : "no");
os << "\n Bit width: "
<< (type.isIntOrFloat() ? std::to_string(type.getIntOrFloatBitWidth())
: "N/A");
os << "\n Is signless: " << (type.isSignlessInteger() ? "yes" : "no");
os << "\n Is signed: " << (type.isSignedInteger() ? "yes" : "no");
// special error message for unsigned integer
if (type.isUnsignedInteger()) {
os << "\n Is unsigned: yes";
os << "\nUnsigned integer support is currently spotty. Please seeheck "
"https://github.com/llvm/torch-mlir/issues/3720 "
"for more details.";
}
llvm::report_fatal_error(llvm::StringRef(errorMsg));
}
Type Torch::getTypeForTorchType(
MLIRContext *context, Type type,
mlir::IntegerType::SignednessSemantics signedness) {
if (isa<Torch::IntType>(type))
return IntegerType::get(context, 64, signedness);
if (isa<Torch::FloatType>(type))
return Float64Type::get(context);
llvm::report_fatal_error("unhandled type for getTypeForTorchType");
}
FailureOr<Type>
Torch::getTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt) {
switch (dtypeInt) {
case torch_upstream::ScalarType::Float:
return Float32Type::get(context);
case torch_upstream::ScalarType::Double:
return Float64Type::get(context);
case torch_upstream::ScalarType::Long:
return IntegerType::get(context, 64, mlir::IntegerType::Signed);
case torch_upstream::ScalarType::Int:
return IntegerType::get(context, 32, mlir::IntegerType::Signed);
case torch_upstream::ScalarType::Short:
return IntegerType::get(context, 16, mlir::IntegerType::Signed);
case torch_upstream::ScalarType::Bool:
return IntegerType::get(context, 1);
case torch_upstream::ScalarType::BFloat16:
return mlir::FloatType::getBF16(context);
case torch_upstream::ScalarType::Half:
return mlir::FloatType::getF16(context);
case torch_upstream::ScalarType::Byte:
return mlir::IntegerType::get(context, 8, mlir::IntegerType::Unsigned);
case torch_upstream::ScalarType::Char:
return mlir::IntegerType::get(context, 8, mlir::IntegerType::Signed);
case torch_upstream::ScalarType::QUInt8:
return QUInt8Type::get(context);
case torch_upstream::ScalarType::QInt8:
return QInt8Type::get(context);
case torch_upstream::ScalarType::QInt16:
return QInt16Type::get(context);
case torch_upstream::ScalarType::QInt32:
return QInt32Type::get(context);
case torch_upstream::ScalarType::ComplexHalf:
return mlir::ComplexType::get(Float16Type::get(context));
case torch_upstream::ScalarType::ComplexFloat:
return mlir::ComplexType::get(Float32Type::get(context));
case torch_upstream::ScalarType::ComplexDouble:
return mlir::ComplexType::get(Float64Type::get(context));
case torch_upstream::ScalarType::Float8_e5m2:
return Float8E5M2Type::get(context);
case torch_upstream::ScalarType::Float8_e4m3fn:
return Float8E4M3FNType::get(context);
case torch_upstream::ScalarType::Float8_e5m2fnuz:
return Float8E5M2FNUZType::get(context);
case torch_upstream::ScalarType::Float8_e4m3fnuz:
return Float8E4M3FNUZType::get(context);
case torch_upstream::ScalarType::Undefined:
return failure();
default:
llvm::report_fatal_error("unhandled type for getTypeForScalarType");
}
}
FailureOr<Type>
Torch::getTorchTypeForScalarType(MLIRContext *context,
torch_upstream::ScalarType dtypeInt) {
switch (dtypeInt) {
case torch_upstream::ScalarType::Double:
return Torch::FloatType::get(context);
case torch_upstream::ScalarType::Long:
return Torch::IntType::get(context);
case torch_upstream::ScalarType::Undefined:
default:
return failure();
}
}
Type Torch::getDefaultDtypeForTorchScalar(Type type) {
MLIRContext *context = type.getContext();
if (isa<Torch::FloatType>(type)) {
// For now, use float32 which is the initial default dtype returned by
// `torch.get_default_dtype`.
return Float32Type::get(context);
}
if (isa<Torch::IntType>(type))
return IntegerType::get(context, 64, IntegerType::Signed);
if (isa<Torch::BoolType>(type))
return IntegerType::get(context, 1);
llvm_unreachable(
"getDefaultDtypeForTorchScalar called on an unsupported type");
}
Type Torch::getBuiltInTypeForTorchScalar(Type type) {
MLIRContext *context = type.getContext();
if (isa<Torch::FloatType>(type))
return Float64Type::get(context);
if (isa<Torch::IntType>(type))
return IntegerType::get(context, 64, IntegerType::Signed);
if (isa<Torch::BoolType>(type))
return IntegerType::get(context, 1);
llvm_unreachable(
"getBuiltInTypeForTorchScalar called on an unsupported type");
}
Value Torch::getDtypeIntValueForType(PatternRewriter &rewriter, Location loc,
Type dtype) {
int intType = (int)getScalarTypeForType(dtype);
return rewriter.create<ConstantIntOp>(loc,
rewriter.getI64IntegerAttr(intType));
}
// Helper to convert a tensor to a specific scalar type.
Value Torch::convertTensorToDtype(PatternRewriter &rewriter, Location loc,
Value input, Type dtype) {
BaseTensorType origType = cast<BaseTensorType>(input.getType());
Type newType = origType.getWithSizesAndDtype(origType.getSizes(), dtype);
// `convertIntVal` contains the corresponding integer for the dtype which is
// used by the aten.to.dtype op.
Value convertIntVal = getDtypeIntValueForType(rewriter, loc, dtype);
Value falseVal = rewriter.create<ConstantBoolOp>(loc, false);
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value converted = rewriter.create<AtenToDtypeOp>(
loc, newType, input, convertIntVal, falseVal, falseVal, noneVal);
return converted;
}
bool Torch::isBuiltInType(Type type) {
return isa<BuiltinDialect>(type.getDialect());
}
std::optional<unsigned> Torch::getTensorRank(Value tensor) {
BaseTensorType tensorType = cast<BaseTensorType>(tensor.getType());
if (!tensorType.hasSizes())
return std::nullopt;
return tensorType.getSizes().size();
}
std::optional<int64_t> Torch::getTensorNumel(Value tensor) {
BaseTensorType tensorType = cast<BaseTensorType>(tensor.getType());
if (!tensorType.hasSizes())
return std::nullopt;
int64_t numel = 1;
for (auto dim : tensorType.getSizes()) {
if (dim == ShapedType::kDynamic)
return ShapedType::kDynamic;
numel *= dim;
}
return numel;
}
bool Torch::isViewLikeOp(Operation *op) {
// AtenContiguousOp might return a view, so this is conservatively
// correct. We could potentially be more precise and identify the cases
// that it does not return a view and treat those as having value
// semantics.
return isa<AtenAsStridedOp, AtenBroadcastToOp, AtenContiguousOp, AtenDetachOp,
AtenExpandAsOp, AtenExpandOp, AtenFlattenUsingIntsOp,
AtenUnflattenIntOp, AtenPermuteOp, AtenReshapeOp,
Aten_ReshapeAliasOp, AtenSelectIntOp, AtenSliceTensorOp,
AtenSqueezeDimOp, AtenSqueezeOp, AtenTOp, AtenToDtypeOp,
AtenTransposeIntOp, AtenUnsqueezeOp, AtenViewOp,
TensorStaticInfoCastOp, AtenToDtypeLayoutOp, AtenNumpyTOp,
AtenNarrowOp, AtenNarrowTensorOp, AtenToDeviceOp, PrimsSqueezeOp,
AtenMovedimIntOp, PrimsViewOfOp, AtenRealOp, AtenImagOp,
PrimsSplitDimOp, AtenViewAsComplexOp, AtenViewAsRealOp,
AtenPixelShuffleOp, AtenDiagonalOp, AtenUnfoldOp>(op);
}
Value Torch::getConstantWithGivenDtypeAndValue(PatternRewriter &rewriter,
Location loc, float value,
Type dtype) {
// Creating constants satisfying backend contract.
if (dtype.isInteger(64) || dtype.isInteger(32) || dtype.isInteger(16) ||
dtype.isInteger(8) || dtype.isInteger(1))
return rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr((int64_t)value));
if (dtype.isF64() || dtype.isF32() || dtype.isF16() || dtype.isBF16())
return rewriter.create<ConstantFloatOp>(loc,
rewriter.getF64FloatAttr(value));
llvm::report_fatal_error(
"unhandled type for getConstantWithGivenDtypeAndValue");
}
// Return the number of elements of a tensor if the shape is static; otherwise,
// return -1.
int64_t Torch::getNumberOfElements(RankedTensorType inputType) {
if (!inputType.hasStaticShape())
return -1;
SmallVector<int64_t> inputShape =
makeShapeTorchCompatible(inputType.getShape());
int64_t numel = 1;
for (int64_t i = 0; i < inputType.getRank(); i++)
numel *= inputShape[i];
return numel;
}
SmallVector<int64_t> Torch::makeShapeLLVMCompatible(ArrayRef<int64_t> shape) {
SmallVector<int64_t> updatedShape(shape);
int64_t kDynamic = ShapedType::kDynamic;
for (unsigned i = 0; i < shape.size(); i++) {
assert(shape[i] >= 0 || shape[i] == kUnknownSize);
if (shape[i] == kUnknownSize)
updatedShape[i] = kDynamic;
}
return updatedShape;
}
SmallVector<int64_t> Torch::makeShapeTorchCompatible(ArrayRef<int64_t> shape) {
SmallVector<int64_t> updatedShape(shape);
int64_t kDynamic = ShapedType::kDynamic;
for (unsigned i = 0; i < shape.size(); i++) {
assert(shape[i] >= 0 || shape[i] == kDynamic);
if (shape[i] == kDynamic)
updatedShape[i] = kUnknownSize;
}
return updatedShape;
}
ValueTensorType Torch::getTensorTypeFromShapeValues(ArrayRef<Value> shapes,
Type dtype) {
assert(!shapes.empty() && "shape vector cannot be empty");
SmallVector<int64_t> shapeInts;
for (Value shape : shapes) {
int64_t dim;
if (matchPattern(shape, m_TorchConstantInt(&dim)))
shapeInts.push_back(dim);
else
shapeInts.push_back(kUnknownSize);
}
return Torch::ValueTensorType::get(shapes[0].getContext(), shapeInts, dtype);
}
// Helper function to get the size of the tensor at the given dimension.
Value Torch::getTensorDimSize(PatternRewriter &rewriter, Value tensor,
int64_t dim) {
auto loc = tensor.getLoc();
auto dimVal =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(dim));
// Use 'createOrFold' instead of 'create':
// If the dimension is a constant, then the AtenSizeIntOp is folded to a
// ContantIntOp.
return rewriter.createOrFold<AtenSizeIntOp>(loc, tensor, dimVal);
}
// Helper function to squeeze the input tensor at given dim.
// Return the squeezed tensor or failure.
FailureOr<Value> Torch::squeezeTensor(PatternRewriter &rewriter, Operation *op,
Location loc, int64_t dim, Value input) {
BaseTensorType inputType = cast<BaseTensorType>(input.getType());
if (!inputType.hasSizes()) {
return rewriter.notifyMatchFailure(loc, "input tensor must have size");
}
SmallVector<int64_t> inputShape{inputType.getSizes()};
unsigned inputRank = inputShape.size();
dim = toPositiveDim(dim, inputRank);
if (!isValidDim(dim, inputRank)) {
return rewriter.notifyMatchFailure(
op, "dimension to be squeezed is an invalid dim");
}
inputShape.erase(inputShape.begin() + dim);
Type squeezedType =
inputType.getWithSizesAndDtype(inputShape, inputType.getOptionalDtype());
Value cstDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(dim));
// Adding a check to verify if the dimension to be squeezed has size 1 or not.
Value cstOne =
rewriter.create<Torch::ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, input, cstDim);
Value cmp = rewriter.create<Torch::AtenEqIntOp>(loc, dimSize, cstOne);
rewriter.create<Torch::RuntimeAssertOp>(
loc, cmp,
"squeeze operation possible for dim only when input_shape[dim] == 1.");
Value result =
rewriter.create<AtenSqueezeDimOp>(loc, squeezedType, input, cstDim);
return result;
}
// Helper function to unsqueeze the input tensor at given dim.
// Return the unsqueezed tensor or failure.
FailureOr<Value> Torch::unsqueezeTensor(PatternRewriter &rewriter,
Operation *op, Value input, Value dim) {
BaseTensorType inputType = cast<BaseTensorType>(input.getType());
if (!inputType.hasSizes()) {
return rewriter.notifyMatchFailure(op, "input tensor must have size");
}
FailureOr<Attribute> enc =
getSparsityWithDenseLTAtDim(inputType.getOptionalSparsity(), dim);
if (failed(enc)) {
return failure();
}
SmallVector<int64_t> unsqueezedShape;
ArrayRef<int64_t> inputShape = inputType.getSizes();
// `input` has a reduced rank. Hence add 1.
int64_t unsqueezedRank = inputShape.size() + 1;
int64_t dimInt = 0;
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
dimInt = toPositiveDim(dimInt, unsqueezedRank);
if (!isValidDim(dimInt, unsqueezedRank)) {
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
}
unsqueezedShape.append(inputShape.begin(), inputShape.end());
unsqueezedShape.insert(unsqueezedShape.begin() + dimInt, 1);
} else {
unsqueezedShape.resize(unsqueezedRank, kUnknownSize);
}
Type unsqueezedType = inputType.getWithSizesAndDtypeAndSparsity(
unsqueezedShape, inputType.getOptionalDtype(), enc.value());
Value unsqueezed = rewriter.create<AtenUnsqueezeOp>(
op->getLoc(), unsqueezedType, input, dim);
return unsqueezed;
}
// Checks whether the `shapeA` and `shapeB` are broadcast compatible or not. If
// yes, then computes the final broadcast shape.
void Torch::computeBroadcastShape(PatternRewriter &rewriter, Location loc,
Value inputA, Value inputB,
SmallVector<int64_t> &resultShape,
SmallVector<Value> &resultShapeValue) {
SmallVector<int64_t> shapeA{
cast<BaseTensorType>(inputA.getType()).getSizes()};
SmallVector<int64_t> shapeB{
cast<BaseTensorType>(inputB.getType()).getSizes()};
unsigned rankA = shapeA.size();
unsigned rankB = shapeB.size();
unsigned minRank = rankA > rankB ? rankB : rankA;
// Check whether the shapes of the tensors are broadcastable or not.
// Two tensors are “broadcastable” if the following rules hold:
// 1.) Each tensor has at least one dimension.
// 2.) When iterating over the dimension sizes, starting at the trailing
// dimension, the dimension sizes must either be equal, one of them is 1, or
// one of them does not exist.
for (unsigned i = 0; i < minRank; i++) {
Value sizeDimA = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(rankA - i - 1));
Value sizeDimB = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(rankB - i - 1));
Value sizeInputA =
rewriter.createOrFold<AtenSizeIntOp>(loc, inputA, sizeDimA);
Value sizeInputB =
rewriter.createOrFold<AtenSizeIntOp>(loc, inputB, sizeDimB);
Value torchCstOne = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
Value cmpSizeAEqualsSizeB =
rewriter.create<Torch::AtenEqIntOp>(loc, sizeInputA, sizeInputB);
Value cmpSizeAEqualsOne =
rewriter.create<Torch::AtenEqIntOp>(loc, sizeInputA, torchCstOne);
Value cmpSizeBEqualsOne =
rewriter.create<Torch::AtenEqIntOp>(loc, sizeInputB, torchCstOne);
Value anyBoolOpList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(cmpSizeAEqualsOne.getType()),
SmallVector<Value>{cmpSizeAEqualsSizeB, cmpSizeAEqualsOne,
cmpSizeBEqualsOne});
Value cmp = rewriter.create<Torch::AtenAnyBoolOp>(loc, anyBoolOpList);
rewriter.create<Torch::RuntimeAssertOp>(
loc, cmp, "tensors are not broadcast compatible");
}
// If we reach here then it means both the shapes are broadcast compatible.
resultShape = rankA >= rankB ? shapeA : shapeB;
Value shapeTensor = rankA >= rankB ? inputA : inputB;
for (unsigned i = 0; i < resultShape.size(); i++) {
Value sizeDim = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(i));
resultShapeValue.push_back(
rewriter.createOrFold<AtenSizeIntOp>(loc, shapeTensor, sizeDim));
}
unsigned resultRank = resultShape.size();
for (unsigned i = 0; i < minRank; i++) {
Value sizeDimA = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(rankA - i - 1));
Value sizeDimB = rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(rankB - i - 1));
Value sizeInputA =
rewriter.createOrFold<AtenSizeIntOp>(loc, inputA, sizeDimA);
Value sizeInputB =
rewriter.createOrFold<AtenSizeIntOp>(loc, inputB, sizeDimB);
resultShapeValue[resultRank - i - 1] =
rewriter.create<PrimMaxIntOp>(loc, sizeInputA, sizeInputB);
if (shapeA[rankA - i - 1] == kUnknownSize ||
shapeB[rankB - i - 1] == kUnknownSize) {
resultShape[resultRank - i - 1] = kUnknownSize;
} else {
resultShape[resultRank - i - 1] =
std::max(shapeA[rankA - i - 1], shapeB[rankB - i - 1]);
}
}
}
bool Torch::isAssumingStrictSymbolicShapes(Block *block) {
for (Operation *parentOp = block->getParentOp(); parentOp;
parentOp = parentOp->getParentOp()) {
if (parentOp->hasAttr("torch.assume_strict_symbolic_shapes"))
return true;
}
return false;
}
LogicalResult Torch::checkDefaultStrideHelper(Operation *op,
PatternRewriter &rewriter,
Value opSize, Value opStride,
Location loc) {
SmallVector<int64_t> sizeListInts, strideListInts;
if (matchPattern(opSize, m_TorchListOfConstantInts(sizeListInts)) &&
matchPattern(opStride, m_TorchListOfConstantInts(strideListInts))) {
// We only support the cases with default stride values.
// For ex: aten.new_empty_strided(self, size=[2, 3, 4], stride=[12, 4, 1])
// Here the stride[0] == size[1] * size[2], stride[1] == size[2], and
// stride[2] == 1.
bool isDefaultStride = true;
for (unsigned i = 0; i < strideListInts.size(); i++) {
int64_t defaultStride = 1;
for (unsigned j = i + 1; j < sizeListInts.size(); j++)
defaultStride *= sizeListInts[j];
if (defaultStride != strideListInts[i]) {
isDefaultStride = false;
break;
}
}
if (!isDefaultStride)
return rewriter.notifyMatchFailure(
op, "only default strides supported for empty_strided op");
return success();
} else {
SmallVector<Value> sizeListValues;
if (!getListConstructElements(opSize, sizeListValues))
return rewriter.notifyMatchFailure(op, "couldn't get size list values");
SmallVector<Value> strideListValues;
if (!getListConstructElements(opStride, strideListValues))
return rewriter.notifyMatchFailure(op,
"couldn't get stride list values.");
SmallVector<Value> boolVector;
for (unsigned i = 0; i < strideListValues.size(); i++) {
Value defaultStride = rewriter.createOrFold<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(1));
for (unsigned j = i + 1; j < sizeListValues.size(); j++) {
defaultStride = rewriter.createOrFold<Torch::AtenMulIntOp>(
loc, defaultStride, sizeListValues[j]);
}
boolVector.push_back(rewriter.createOrFold<Torch::AtenEqIntOp>(
loc, defaultStride, strideListValues[i]));
}
Value allBoolOpList = rewriter.createOrFold<PrimListConstructOp>(
loc, Torch::ListType::get(rewriter.getType<Torch::BoolType>()),
boolVector);
Value cmp = rewriter.createOrFold<Torch::AtenAllBoolOp>(loc, allBoolOpList);
rewriter.createOrFold<Torch::RuntimeAssertOp>(
loc, cmp, "not all strides are default");
return success();
}
}
// Helper to create a tensor filled with the given scalar. Scalar would be
// converted the to the element type of the given tensor type.
Value Torch::createInitTensor(PatternRewriter &rewriter, Location loc,
BaseTensorType resultType, Value scalar,
Value sizeList) {
assert(resultType.hasDtype() && "result must have dtype");
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
Value dtype = getDtypeIntValueForType(rewriter, loc, resultType.getDtype());
return rewriter.create<AtenFullOp>(loc, resultType, sizeList, scalar, dtype,
/*layout=*/noneVal,
/*device=*/noneVal,
/*memory_format=*/noneVal);
}
// Helper to create a rank 0 tensor filled with the given `scalar`. `scalar`
// would be converted to the element type of the given `inputType`.
Value Torch::createRank0Tensor(PatternRewriter &rewriter, Location loc,
BaseTensorType inputType, Value scalar) {
assert(inputType.hasDtype() && "input must have dtype");
SmallVector<int64_t> sizes;
BaseTensorType rank0TensorTy = cast<BaseTensorType>(
inputType.getWithSizesAndDtype(ArrayRef(sizes), inputType.getDtype()));
Value dimList = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(inputType.getContext())),
ValueRange{});
return createInitTensor(rewriter, loc, rank0TensorTy, scalar, dimList);
}
LogicalResult Torch::getTransposedType(BaseTensorType inType, int64_t dimA,
int64_t dimB, Type &transposedType) {
if (!inType.hasSizes())
return failure();
SmallVector<int64_t> shape(inType.getSizes());
int64_t tmp = shape[dimA];
shape[dimA] = shape[dimB];
shape[dimB] = tmp;
transposedType = inType.getWithSizesAndDtype(llvm::ArrayRef(shape),
inType.getOptionalDtype());
return success();
}
LogicalResult Torch::getPermutedType(BaseTensorType inType,
SmallVector<int64_t> permuteDims,
Type &permutedType) {
if (!inType.hasSizes())
return failure();
SmallVector<int64_t> shape(inType.getSizes());
if (shape.size() != permuteDims.size())
return failure();
SmallVector<int64_t> permutedShape;
for (unsigned i = 0; i < shape.size(); i++)
permutedShape.push_back(shape[permuteDims[i]]);
permutedType = inType.getWithSizesAndDtype(llvm::ArrayRef(permutedShape),
inType.getOptionalDtype());
return success();
}
Type Torch::getDefaultAccType(PatternRewriter &rewriter, Type inputType) {
if (inputType.isF16())
return rewriter.getF32Type();
if (inputType.isBF16())
return rewriter.getF32Type();
if (isa<Float32Type>(inputType))
return rewriter.getF32Type();
if (isa<Float64Type>(inputType))
return rewriter.getF64Type();
if (inputType.isFloat8E5M2())
return rewriter.getF32Type();
if (inputType.isFloat8E4M3FN())
return rewriter.getF32Type();
if (inputType.isFloat8E5M2FNUZ())
return rewriter.getF32Type();
if (inputType.isFloat8E4M3FNUZ())
return rewriter.getF32Type();
if (inputType.isInteger(8))
// this is an intentional deviation from CUDA (which accumulates i8 to i64)
return rewriter.getI32Type();
if (inputType.isInteger(16))
return rewriter.getI64Type();
if (inputType.isInteger(32))
return rewriter.getI64Type();
if (inputType.isInteger(64))
return rewriter.getI64Type();
return inputType;
}