torch-mlir/lib/Conversion/TorchToTosa/TorchToTosa.cpp

1573 lines
61 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#include "torch-mlir/Conversion/TorchToTosa/TorchToTosa.h"
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Traits.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h"
#include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
namespace {
// These legalizations are for unary ops with only for floating point datatypes.
// There is no supported quantized integer mode for these.
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenUnaryFPOnlyOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (!selfTy)
return op.emitError("Only Tensor types supported in TOSA");
if (selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
self);
return success();
} else {
return op.emitError(
"Only floating-point datatype legalization supported");
}
}
};
// These unary op legalizations are identical for floating-point
// or quantized types
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenUnaryOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
adaptor.self());
return success();
}
};
// These binary op legalizations are identical for floating-point
// or quantized types
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenBinaryOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().cast<TensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
auto rhsElemTy = rhsTy.getElementType();
if (lhsElemTy != rhsElemTy)
return op.emitError("Add: input datatypes mismatched");
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
lhs, rhs);
return success();
}
};
// FIXME: This will eventually go into a Tosa*Utils file.
LogicalResult torchScalarToTosaTensor(ConversionPatternRewriter &rewriter,
Operation *op, Value torchScalarValue,
Value &tosaTensor, Type dtype) {
if (dtype.isa<mlir::FloatType>()) {
double scalarValue;
if (!matchPattern(torchScalarValue, m_TorchConstantFloat(&scalarValue)))
return failure();
tosaTensor =
mlir::tosa::getTosaConstTensorSingleF32(rewriter, op, scalarValue);
} else if (auto intType = dtype.dyn_cast<mlir::IntegerType>()) {
int64_t scalarValue;
if (!matchPattern(torchScalarValue, m_TorchConstantInt(&scalarValue)))
return failure();
auto w = intType.getWidth();
if (w != 32 && w != 64)
return op->emitError("Unsupported integer type") << intType;
if (w == 32) {
tosaTensor = tosa::getConstTensor<int32_t>(
rewriter, op, {static_cast<int32_t>(scalarValue)}, {})
.getValue();
} else if (w == 64) {
tosaTensor =
tosa::getConstTensor<int64_t>(rewriter, op, {scalarValue}, {})
.getValue();
}
return success();
} else
return op->emitError("Usupported element type");
return success();
}
LogicalResult torchAlphaToTosaTensor(ConversionPatternRewriter &rewriter,
Operation *op, Value alphaScalar,
Value &alphaTensor, Type dtype,
bool checkForUnity) {
if (succeeded(torchScalarToTosaTensor(rewriter, op, alphaScalar, alphaTensor,
dtype)))
return success();
// `alpha` has not been specified.
int64_t alphaValue;
if (!matchPattern(alphaScalar, m_TorchConstantInt(&alphaValue)))
return op->emitError("Currently only scalar constants are supported for "
"alpha in TOSA operation");
// When no alpha has been specified, this must be 1.
if (checkForUnity && alphaValue != 1)
return op->emitError("Unsupported integer value for alpha");
alphaTensor =
mlir::tosa::getTosaConstTensorSingleF32(rewriter, op, alphaValue);
return success();
}
// These binary op legalizations are specific to add/sub which have an
// alpha multiplier.
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenAddSubOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().dyn_cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().dyn_cast<TensorType>();
if (!lhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
if (!lhsElemTy.isIntOrFloat())
return op.emitError(
"Only floating-point or integer datatype legalization supported");
Value rhsAsTensor;
if (!rhsTy) {
if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(),
op.other(), rhsAsTensor, lhsElemTy)))
return op.emitError("Currently only scalar constants are supported for "
"conversion in TOSA operation");
}
auto rhsTensor = rhsTy ? rhs : rhsAsTensor;
// Handle alpha.
Value alphaTensor;
if (failed(torchAlphaToTosaTensor(rewriter, op.getOperation(), op.alpha(),
alphaTensor, lhsElemTy, false)))
return op.emitError("Currently only scalar constants are supported for "
"alpha in conversion to TOSA operation");
auto multTensor = rewriter.create<tosa::MulOp>(
op.getLoc(), rhsTy ? rhsTy : RankedTensorType::get({}, lhsElemTy),
rhsTensor, alphaTensor, /*shift*/ 0);
if (lhsElemTy.isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
lhs, multTensor);
return success();
} else {
return op.emitError(
"Only floating-point datatype legalization supported");
}
}
}; // namespace
// Binary op legalizations for comparator ops.
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenCompareOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().dyn_cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().dyn_cast<TensorType>();
if (!lhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
if (!lhsElemTy.isIntOrFloat())
return op.emitError(
"Only floating-point or integer datatype legalization supported");
Value rhsAsTensor;
if (!rhsTy) {
if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(),
op.other(), rhsAsTensor, lhsElemTy)))
return op.emitError("Currently only scalar constants are supported for "
"conversion in TOSA operation");
}
auto rhsTensor = rhsTy ? rhs : rhsAsTensor;
// There is no Lesser operator in TOSA
auto swapLhsRhs = (std::is_same<AtenOpT, AtenLtTensorOp>() ||
std::is_same<AtenOpT, AtenLtScalarOp>());
rewriter.replaceOpWithNewOp<TosaOpT>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
(swapLhsRhs ? rhsTensor : lhs), (swapLhsRhs ? lhs : rhsTensor));
return success();
}
};
// Binary op legalizations for Mul variants.
template <typename AtenOpT>
class ConvertAtenMulOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().dyn_cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().dyn_cast<TensorType>();
if (!lhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
if (!lhsElemTy.isIntOrFloat())
return op.emitError(
"Only floating-point or integer datatype legalization supported");
Value rhsAsTensor;
if (!rhsTy) {
if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(),
op.other(), rhsAsTensor, lhsElemTy)))
return op.emitError("Currently only scalar constants are supported for "
"conversion in TOSA operation");
}
auto rhsTensor = rhsTy ? rhs : rhsAsTensor;
if (lhsElemTy.isa<mlir::FloatType>() ||
lhsElemTy.isa<mlir::IntegerType>()) {
rewriter.replaceOpWithNewOp<tosa::MulOp>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
lhs, rhsTensor,
/*shift=*/0);
return success();
} else {
// Quantized multiplication may need to rescale inputs.
return op.emitError("Only floating-point or integer datatype "
"legalization currently supported");
}
}
};
template <typename AtenOpT>
class ConvertAtenDivOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().dyn_cast<TensorType>();
Value rhs = adaptor.other();
auto rhsTy = rhs.getType().dyn_cast<TensorType>();
if (!lhsTy)
return op.emitError("Only Tensor types supported in TOSA");
auto lhsElemTy = lhsTy.getElementType();
if (!lhsElemTy.isIntOrFloat())
return op.emitError(
"Only floating-point or integer datatype legalization supported");
Value rhsAsTensor;
if (!rhsTy) {
if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(),
op.other(), rhsAsTensor, lhsElemTy)))
return op.emitError("Currently only scalar constants are supported for "
"conversion in TOSA operation");
}
auto rhsTensor = rhsTy ? rhs : rhsAsTensor;
if (lhsElemTy.isa<mlir::FloatType>()) {
auto rcpOp = rewriter.create<tosa::ReciprocalOp>(
op->getLoc(), rhsTy ? rhsTy : RankedTensorType::get({}, lhsElemTy),
rhsTensor);
rewriter.replaceOpWithNewOp<tosa::MulOp>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
lhs, rcpOp.getResult(), /*shift=*/0);
} else {
rewriter.replaceOpWithNewOp<tosa::DivOp>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()),
lhs, rhsTensor);
}
return success();
}
};
// This defines a template to construct ops whose legalizations are
// specialized.
template <typename AtenOpT>
class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
template <>
LogicalResult ConvertAtenOp<AtenTanhOp>::matchAndRewrite(
AtenTanhOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (selfTy && selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<tosa::TanhOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
} else {
// Sigmoid legalization in TOSA for quantized element-type uses
// specialized tosa.table construct.
return op.emitError(
"Only floating-point datatype legalization currently supported");
}
}
template <>
LogicalResult ConvertAtenOp<AtenSigmoidOp>::matchAndRewrite(
AtenSigmoidOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (selfTy && selfTy.getElementType().isa<mlir::FloatType>()) {
rewriter.replaceOpWithNewOp<tosa::SigmoidOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
} else {
// Sigmoid legalization in TOSA for quantized element-type uses
// specialized tosa.table construct.
return op.emitError(
"Only floating-point datatype legalization currently supported");
}
}
template <>
LogicalResult ConvertAtenOp<AtenReluOp>::matchAndRewrite(
AtenReluOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
// Maps to tosa.clamp which has both int and fp limits.
int64_t clampMin = 0;
Value clampIn = self;
if (selfTy) {
// Rescale the clampIn for quantized types. TBD
if (!selfTy.getElementType().isa<mlir::FloatType>()) {
return op.emitError(
"Only floating-point datatype legalization currently supported");
}
rewriter.replaceOpWithNewOp<tosa::ClampOp>(
op, getTypeConverter()->convertType(op.getType()), clampIn,
rewriter.getI64IntegerAttr(clampMin),
rewriter.getI64IntegerAttr(std::numeric_limits<int32_t>::max()),
rewriter.getF32FloatAttr(0.0f),
rewriter.getF32FloatAttr(std::numeric_limits<float>::max()));
return success();
} else {
return op.emitError("Only Tensor types supported in TOSA");
}
}
using ReductionConvFunc = llvm::Optional<Value> (*)(PatternRewriter &,
Operation *,
RankedTensorType, Value,
ElementsAttr, bool);
// They all constitute a common form invoking the appropriate
// converion function in TosaLegalizeCommon.cpp
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenReductionOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
// Each variant must implement corresponding parameter parsing options
virtual LogicalResult readReduceDimsAndKeepDims(
AtenOpT op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr, bool &keepDims) const {
return rewriter.notifyMatchFailure(
op, "Unimplemented reduce_dims and keep_dims parsing function");
}
// Common rewriter for all reduction ops, calls the specific implementation of
// readReduceDimsAndKeepDims() needed for the op variant.
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.self();
auto selfTy = self.getType().cast<TensorType>();
if (!selfTy)
return op.emitError("Only Tensor types supported in TOSA");
auto outputTy = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<RankedTensorType>();
if (!outputTy)
return op.emitError(
"Only ranked tensor type outputs permitted for reduce_mean");
ElementsAttr reduceDimsAttr;
bool keepDims;
if (failed(readReduceDimsAndKeepDims(op, adaptor, rewriter, reduceDimsAttr,
keepDims)))
return failure();
llvm::Optional<Value> result =
ConversionFuncT(rewriter, op, outputTy, self, reduceDimsAttr, keepDims);
if (!result)
return failure();
// TBD - support dtype casting.
rewriter.replaceOp(op, {result.getValue()});
return success();
}
};
// This reduction op legalization template handles op variants that have
// explicit reduce_dims dimensions (provided as a list) and keep_dims
// parameters.
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenMultipleDimsReductionOp
: public ConvertAtenReductionOp<AtenOpT, ConversionFuncT> {
using ConvertAtenReductionOp<AtenOpT,
ConversionFuncT>::ConvertAtenReductionOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr,
bool &keepDims) const override {
SmallVector<int64_t, 4> reduceDims;
if (!matchPattern(op.dim(), m_TorchConstantIntList(reduceDims)))
return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");
int64_t N = reduceDims.size();
auto reduceDimsType = RankedTensorType::get({N}, rewriter.getI64Type());
reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType,
llvm::makeArrayRef(reduceDims));
keepDims = false;
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&keepDims)))
return rewriter.notifyMatchFailure(
op, "non-const keepdim parameter unsupported");
return success();
}
};
// This reduction op legalization template handles op variants that reduce in
// only one explicit dim which is provided as a number (rather than a list), and
// a keep_dims parameter.
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenOneDimReductionOp
: public ConvertAtenReductionOp<AtenOpT, ConversionFuncT> {
using ConvertAtenReductionOp<AtenOpT,
ConversionFuncT>::ConvertAtenReductionOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr,
bool &keepDims) const override {
int64_t reduceDim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&reduceDim)))
return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");
auto reduceDimsType = RankedTensorType::get({1}, rewriter.getI64Type());
reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType,
llvm::makeArrayRef({reduceDim}));
keepDims = false;
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&keepDims)))
return rewriter.notifyMatchFailure(
op, "non-const keepdim parameter unsupported");
return success();
}
};
// This reduction op legalization template handles op variants that reduce all
// dims does not keep dims.
template <typename AtenOpT, ReductionConvFunc ConversionFuncT>
class ConvertAtenAllDimsReductionOp
: public ConvertAtenReductionOp<AtenOpT, ConversionFuncT> {
public:
using ConvertAtenReductionOp<AtenOpT,
ConversionFuncT>::ConvertAtenReductionOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult readReduceDimsAndKeepDims(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter,
ElementsAttr &reduceDimsAttr,
bool &keepDims) const override {
auto self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
// Select all dims to reduce
SmallVector<int64_t, 4> reduceDims;
for (int64_t i = 0; i < selfTy.getRank(); i++)
reduceDims.push_back(i);
int64_t N = selfTy.getRank();
auto reduceDimsType = RankedTensorType::get({N}, rewriter.getI64Type());
reduceDimsAttr = DenseIntElementsAttr::get(reduceDimsType,
llvm::makeArrayRef(reduceDims));
keepDims = false;
return success();
}
};
template <>
LogicalResult ConvertAtenOp<AtenArgmaxOp>::matchAndRewrite(
AtenArgmaxOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in TOSA argmax");
int64_t reduceDim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&reduceDim))) {
// NoneType indicates reduce on all dims
reduceDim = -1;
}
bool keepDim = false;
if (!matchPattern(op.keepdim(), m_TorchConstantBool(&keepDim)))
return rewriter.notifyMatchFailure(
op, "non-const keepdim parameter unsupported");
auto resultTy = getTypeConverter()
->convertType(op.getResult().getType())
.cast<RankedTensorType>();
auto outputETy = resultTy.getElementType();
// Create a single instance of tosa.argmax.
// Multiple dims require chained construct.
auto buildArgmax = [&](int64_t reduceDim, Value input) -> Value {
auto inputTy = input.getType().cast<RankedTensorType>();
auto inputShape = inputTy.getShape();
SmallVector<int64_t> outputShapeArr = {};
int32_t i = 0;
for (auto &dim : inputShape) {
if (i++ != reduceDim) {
outputShapeArr.push_back(dim);
} else {
if (keepDim)
outputShapeArr.push_back(1);
}
}
// Tosa argmax output is i32, while Torch backend mandates i64.
auto outputReduceTy = RankedTensorType::get(
ArrayRef<int64_t>(outputShapeArr), rewriter.getI32Type());
auto reduceDimAttr =
rewriter.getIntegerAttr(rewriter.getI64Type(), reduceDim);
return rewriter
.create<tosa::ArgMaxOp>(op->getLoc(),
getTypeConverter()->convertType(outputReduceTy),
input, reduceDimAttr)
.getResult();
};
// Convert the final index to i64 for backend finalization, However, i64
// is not a defined type for tosa.cast, so using arith.extsi instead.
auto castToInt64 = [&](Value result) -> LogicalResult {
auto resTy = result.getType().cast<ShapedType>();
if (!resTy)
return op.emitError("Argmax: Result is not a shaped type");
auto resShape = resTy.getShape();
auto outTy =
RankedTensorType::get(resShape, outputETy); // rewriter.getI64Type());
rewriter.replaceOpWithNewOp<arith::ExtSIOp>(
op, getTypeConverter()->convertType(outTy), result);
return success();
};
if (reduceDim == -1) { // reducing on all dims
Value input = self;
for (int dim = 0; dim < selfTy.getRank(); dim++) {
// progressively reduce each 0-th dim
input = buildArgmax(0, input);
}
return castToInt64(input);
} else {
return castToInt64(buildArgmax(reduceDim, self));
}
return success();
}
template <typename AtenOpT>
class ConvertAtenSqueezeOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
// Each variant must implement corresponding parameter parsing options
virtual LogicalResult
generateSqueezedShape(AtenOpT op, RankedTensorType selfTy,
ConversionPatternRewriter &rewriter,
SmallVector<int64_t> &squeezedShape) const {
return rewriter.notifyMatchFailure(
op, "Unimplemented dim/dim-list parsing function");
}
// Common rewriter for all squeeze ops, calls the specific implementation of
// generateSqueezedShape() needed for the op variant.
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in TOSA argmax");
SmallVector<int64_t> newOutputShape;
if (failed(generateSqueezedShape(op, selfTy, rewriter, newOutputShape)))
return op.emitError("Squeeze could not compute new shape");
auto resultTy = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getResult().getType())
.template cast<RankedTensorType>();
auto resultElemTy = resultTy.getElementType();
auto newOutputTy = RankedTensorType::get(newOutputShape, resultElemTy);
auto reshapeOp = rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
newOutputTy),
self, rewriter.getI64ArrayAttr(newOutputShape));
rewriter.replaceOpWithNewOp<tensor::CastOp>(
op,
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
newOutputTy),
reshapeOp);
return success();
}
};
template <typename AtenOpT>
class ConvertAtenSqueezeOneDimOp : public ConvertAtenSqueezeOp<AtenOpT> {
using ConvertAtenSqueezeOp<AtenOpT>::ConvertAtenSqueezeOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
generateSqueezedShape(AtenOpT op, RankedTensorType selfTy,
ConversionPatternRewriter &rewriter,
SmallVector<int64_t> &squeezedShape) const override {
int64_t squeezeDim;
if (!matchPattern(op.dim(), m_TorchConstantInt(&squeezeDim)))
return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");
// Handle negative dim
if (squeezeDim < 0)
squeezeDim = squeezeDim + selfTy.getRank();
auto selfShape = selfTy.getShape();
// Only dims statically known to have size=1 are reduced.
// Dynamic dims are treated as unknowns and will not be squeezed
// even if dim parameter says it should be.
uint32_t dimNum = 0;
for (auto &dim : selfShape) {
if (dim != 1 || squeezeDim != dimNum)
squeezedShape.push_back(dim);
dimNum++;
}
return success();
}
};
template <typename AtenOpT>
class ConvertAtenSqueezeAllDimsOp : public ConvertAtenSqueezeOp<AtenOpT> {
using ConvertAtenSqueezeOp<AtenOpT>::ConvertAtenSqueezeOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
generateSqueezedShape(AtenOpT op, RankedTensorType selfTy,
ConversionPatternRewriter &rewriter,
SmallVector<int64_t> &squeezedShape) const override {
auto selfShape = selfTy.getShape();
// Dims that may dynamically resolve to 1 are not reduced here. Only
// compile-time resolvable dims are handled here.
for (auto &dim : selfShape) {
if (dim != 1)
squeezedShape.push_back(dim);
}
return success();
}
};
template <>
LogicalResult ConvertAtenOp<AtenPowTensorScalarOp>::matchAndRewrite(
AtenPowTensorScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.self();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in TOSA Pow");
if (!selfTy.getElementType().isa<mlir::FloatType>())
return op.emitError("Only floating-point datatype legalization supported");
Value expTensor;
Value expScalar = op.exponent();
if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(), expScalar,
expTensor, selfTy.getElementType())))
return op.emitError("Currently only scalar constants are supported for "
"conversion in TOSA Pow operation");
rewriter.replaceOpWithNewOp<tosa::PowOp>(
op, getTypeConverter()->convertType(op.getType()), self, expTensor);
return success();
}
// Perform torch matmul, mm and bmm
template <typename AtenOpT>
class ConvertAtenMatMulOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value lhs = adaptor.self();
auto lhsTy = lhs.getType().cast<RankedTensorType>();
// Aten matmul, mm and bmm call operand2 by different names.
Value rhs = adaptor.getOperands()[1];
auto rhsTy = rhs.getType().cast<RankedTensorType>();
if (!lhsTy || !rhsTy)
return op.emitError("Only ranked tensor types supported in TOSA matmul");
auto lhsRank = lhsTy.getRank();
auto rhsRank = rhsTy.getRank();
// Mm takes two 2D tensors
if (isa<AtenMmOp>(op)) {
assert(lhsRank == 2 && rhsRank == 2 &&
"aten.mm called but matrix rank != 2");
}
// Bmm takes two 2D tensors
if (isa<AtenBmmOp>(op)) {
assert(lhsRank == 3 && rhsRank == 3 &&
"aten.bmm called but matrix rank != 2");
}
auto lhsShape = lhsTy.getShape();
auto rhsShape = rhsTy.getShape();
auto lhsElemTy = lhsTy.getElementType();
auto rhsElemTy = rhsTy.getElementType();
if (lhsElemTy != rhsElemTy)
return op.emitError("Matmul: input datatypes mismatched");
// Legalization constructs may offer input shapes but expect output shapes
// to be inferred, e.g.
// func @forward(%arg0: !torch.vtensor<[14,19],f32>,
// %arg1: !torch.vtensor<[19,28],f32>) ->
// !torch.vtensor<[?,?],f32>
// This is tricky with matmul, since TOSA matmul is on 3D inputs.
// This means the need to reshape potentially both inputs and outputs,
// and reshape to unknown shape is undefined.
auto maxInputRank = lhsRank > rhsRank ? lhsRank : rhsRank;
// If performing dot product on vectors, the RHS is synthetically transposed
if (maxInputRank == 1)
maxInputRank++;
// Obtaining the rank broadcasted shapes of tensors makes it easier to
// construct the input and output reshaping logic.
auto getRankBroadcastedShape = [&](Value tensor,
bool isRHS) -> SmallVector<int64_t> {
auto tensorTy = tensor.getType().cast<TensorType>();
auto tensorShape = tensorTy.getShape();
auto tensorRank = tensorTy.getRank();
SmallVector<int64_t> bcastedShape;
auto bcastDims = maxInputRank - tensorRank;
if (isRHS && (tensorRank == 1) && bcastDims) {
// RHS with rank1 is special. It be synthetically transposed to dim[:-2]
for (int32_t i = 0; i < bcastDims - 1; i++)
bcastedShape.push_back(1);
bcastedShape.push_back(tensorShape[0]);
bcastedShape.push_back(1);
} else {
if (bcastDims > 0) { // rank broadcast
for (uint32_t i = 0; i < bcastDims; i++)
bcastedShape.push_back(1);
}
for (auto &dim : tensorShape)
bcastedShape.push_back(dim);
}
return bcastedShape;
};
// Step: Rank broadcast the two inputs.
auto lhsBroadcastedShape = getRankBroadcastedShape(lhs, false);
auto lhsBroadcastedTy =
RankedTensorType::get(lhsBroadcastedShape, lhsElemTy);
auto rhsBroadcastedShape = getRankBroadcastedShape(rhs, true);
auto rhsBroadcastedTy =
RankedTensorType::get(rhsBroadcastedShape, rhsElemTy);
auto rankBroadcastedLhs =
lhsRank == maxInputRank
? lhs
: rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
lhsBroadcastedTy),
lhs, rewriter.getI64ArrayAttr(lhsBroadcastedShape));
auto rankBroadcastedRhs =
rhsRank == maxInputRank
? rhs
: rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
rhsBroadcastedTy),
rhs, rewriter.getI64ArrayAttr(rhsBroadcastedShape));
// TOSA matmul is performed on two 3D inputs and generates a 3D output.
// Lower ranked tensors are dim-1 reshaped up to 3D
auto reshapeUpTo3DTensor = [&](Value tensor) -> Value {
auto tensorTy = tensor.getType().cast<TensorType>();
auto rank = tensorTy.getRank();
assert(rank <= 3 && "reshapeUpTo3D tensor must receive rank <= 3");
if (rank == 3)
return tensor;
auto shape = tensorTy.getShape();
SmallVector<int64_t> newShape({1, 1, 1});
if (rank == 2) { // batchsize = 1
newShape[1] = shape[0];
newShape[2] = shape[1];
} else { // rank 1
newShape[2] = shape[0];
}
auto newType = RankedTensorType::get(newShape, tensorTy.getElementType());
return rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
newType),
tensor, rewriter.getI64ArrayAttr(newShape));
};
// Where broadcasting is required in one or more batch dims, the following
// is done.
// Where all batch dims are involved in broadcasting:
// Given A: 3x1x5x6 and B: 1x4x6x7
// 1. Reshape A to 1x15x6 (squeeze all batchdims into dim1)
// 2. Transpose B to 6x1x4x7, Reshape to 1x6x28
// 3. tosa.Matmul 1x15x6 1x6x28 = 1x15x28
// 4. Reshape out to 3x5x4x7, Transpose to 3x4x5x7
// Where there are batch dimensions that are broadcast and not, the
// treatment is to have dim0 correspond to product of all non-broadcast
// dimsizes:
// Given A: 4x8x16x32 B: 8x32x17
// 1. Reshape A to 8x64x32 (squeeze all unbroadcasted dims into dim0,
// broadcasted dims into dim1)
// 2. No transpose or reshape of B as its batchdims are not broadcast to.
// 3. tosa.Matmul 8x64x32 8x32x17 = 8x64x17
// 4. Reshape to 8x4x16x17, Transpose to 4x8x16x17
// Check if we need to perform the broadcast on batch dim
// Not needed if max rank < 3, or if maxrank == 3 and dim[0] matches
auto needsBatchDimBroadcast = [&]() -> bool {
if (maxInputRank < 3) {
return false;
} else {
if (maxInputRank == 3 &&
lhsBroadcastedShape[0] == rhsBroadcastedShape[0]) {
return false;
}
return true;
}
};
auto performBatchDimBroadcast = needsBatchDimBroadcast();
// Inputs to the tosa.matmul
Value matmulLhs, matmulRhs;
using TensorShape_t = struct {
int64_t dim;
int64_t shape;
};
// Transpose needs to done if transposeDims are not non-monotonically
// increasing. E.g. [0, 1, 2, 3]: No transpose [1, 0, 2, 3]: Transpose dim0
// and dim1 The order need not be sequential, since one or more dims may
// have been removed due to broadcasting.
auto isTransposeRequired = [](SmallVector<int32_t> transposedDims) -> bool {
int32_t lastDim = -1;
for (auto &dim : transposedDims) {
if (lastDim > dim)
return true;
lastDim = dim;
}
return false;
};
SmallVector<TensorShape_t> commonElems, lhsSqueezedElems, rhsSqueezedElems;
if (!performBatchDimBroadcast) {
// Simple with no broadcasting artifacts. Just reshape up to 3D
matmulLhs = reshapeUpTo3DTensor(rankBroadcastedLhs);
matmulRhs = reshapeUpTo3DTensor(rankBroadcastedRhs);
} else {
// In this case, either or both input matrices involve broadcasting on
// their batch dimensions. For example:
// 4x5x6, 1x6x7 -> 4x5x7
// 4x1x5x6, 1x3x6x7 -> 4x3x5x7
// Though maxInputRank is necessarily >=3 here, individual matrices may be
// lower rank.
// E.g. 3x4x5x6, 6 -> 3x4x5
// These are the accumulated products of the shape of each dim:
// 1. common dimensions: upper dimensions (dims other than two rightmost)
// whose shapes are the same for both LHS and RHS.
// 2. LHS squeezed dimensions: all dimensions of LHS that involve
// broadcasting in either direction, plus the LHS[-2] shape
// 3. RHS squeezed dimensions: all dimensions of RHS that involve
// broadcasting in either direction, plus the RHS[-1] shape
int64_t commonValue = 1, lhsSqueezedValue = 1, rhsSqueezedValue = 1;
// For both LHS and RHS, the dimensions are separated into the common,
// squeezed and remaining dim. E.g. given
// LHS = 3x4x5x6
// RHS = 1x4x6x7
// common = {{dim=1, shape=4}}
// lhs squeezed = {{dim=0, shape=3},
// {dim=2, shape=5}}
// rhs squeezed = {{dim=0, shape=1},
// {dim=2, shape=7}}
// The matmul dim is LHS[-1] and RHS[-2], i.e. 6.
// Once this is obtained, LHS and RHS are expressed as:
// LHS = {common, lhs_squeezed, matmul_dim}
// RHS = {common, matmul_dim, rhs_squeezed}
// The matmul is then performed to obtain output:
// matmul_out = {common, lhs_squeezed, rhs_squeezed}
// Finally, we reshape to 'unsqueeze' the LHS and RHS parts and transpose
// them back to their correct positions.
SmallVector<int64_t> transposedLhsShape;
SmallVector<int32_t> transposedLhsDims;
// Step: generate the common dim/shape information
for (uint32_t dim = 0; dim < maxInputRank - 2; dim++) {
bool isDynamicDim =
lhsBroadcastedTy.isDynamic(lhsBroadcastedShape[dim]);
if (isDynamicDim ||
lhsBroadcastedShape[dim] == rhsBroadcastedShape[dim]) {
commonValue *= lhsBroadcastedShape[dim];
commonElems.push_back({dim, lhsBroadcastedShape[dim]});
}
}
// Step: generate the LHS squeezed dim/shape information.
bool hasDynamicDims = false;
for (uint32_t dim = 0; dim < maxInputRank - 2; dim++) {
bool isDynamicDim =
lhsBroadcastedTy.isDynamic(lhsBroadcastedShape[dim]);
hasDynamicDims |= isDynamicDim;
if (!isDynamicDim &&
lhsBroadcastedShape[dim] != rhsBroadcastedShape[dim]) {
lhsSqueezedValue *= lhsBroadcastedShape[dim];
lhsSqueezedElems.push_back({dim, lhsBroadcastedShape[dim]});
}
}
// including LHS[-2]
lhsSqueezedElems.push_back(
{maxInputRank - 2, lhsBroadcastedShape[maxInputRank - 2]});
lhsSqueezedValue *= lhsBroadcastedShape[maxInputRank - 2];
// Step: Create the tosa.transpose array. If this array has a
// non-monotonic series of dims, perform transpose.
// First the common_elems
for (uint32_t i = 0; i < commonElems.size(); i++) {
transposedLhsShape.push_back(commonElems[i].shape);
transposedLhsDims.push_back(commonElems[i].dim);
}
// then the lhs_squeezed elems
for (uint32_t i = 0; i < lhsSqueezedElems.size(); i++) {
transposedLhsShape.push_back(lhsSqueezedElems[i].shape);
transposedLhsDims.push_back(lhsSqueezedElems[i].dim);
}
// then the final dim
transposedLhsDims.push_back(maxInputRank - 1);
transposedLhsShape.push_back(lhsBroadcastedShape[maxInputRank - 1]);
bool lhsNeedsTranspose = isTransposeRequired(transposedLhsDims);
auto lhsReshapeInput = rankBroadcastedLhs;
if (lhsNeedsTranspose) {
auto transposedLhsType =
RankedTensorType::get(transposedLhsShape, rhsElemTy);
llvm::Optional<Value> transposedLhsDimsConst =
tosa::getConstTensor<int32_t>(
rewriter, op,
/*vec=*/transposedLhsDims,
/*shape=*/{static_cast<int32_t>(transposedLhsDims.size())});
lhsReshapeInput =
rewriter
.create<tosa::TransposeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(transposedLhsType),
rankBroadcastedLhs, transposedLhsDimsConst.getValue())
.getResult();
}
// LHS = {common, lhs_squeezed, matmul_dim}
SmallVector<int64_t> newLhsShape(
{1, 1, lhsBroadcastedShape[maxInputRank - 1]});
newLhsShape[0] = commonValue;
newLhsShape[1] =
hasDynamicDims ? ShapedType::kDynamicSize : lhsSqueezedValue;
auto newLhsType = RankedTensorType::get(newLhsShape, lhsElemTy);
matmulLhs = rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
newLhsType),
lhsReshapeInput, rewriter.getI64ArrayAttr(newLhsShape));
SmallVector<int64_t> transposedRhsShape;
SmallVector<int32_t> transposedRhsDims;
// Step: Create the RHS transpose sequence
// RHS = {common, matmul_dim, rhs_squeezed}
// first the common_dims
for (uint32_t i = 0; i < commonElems.size(); i++) {
transposedRhsShape.push_back(commonElems[i].shape);
transposedRhsDims.push_back(commonElems[i].dim);
}
// The matmul_dim of RHS
transposedRhsDims.push_back(maxInputRank - 2);
transposedRhsShape.push_back(rhsBroadcastedShape[maxInputRank - 2]);
// finally all the rhs_squeeze dims
hasDynamicDims = false;
for (uint32_t dim = 0; dim < maxInputRank - 2; dim++) {
bool isDynamicDim =
rhsBroadcastedTy.isDynamic(rhsBroadcastedShape[dim]);
hasDynamicDims |= isDynamicDim;
if (!isDynamicDim &&
rhsBroadcastedShape[dim] != lhsBroadcastedShape[dim]) {
rhsSqueezedElems.push_back({dim, rhsBroadcastedShape[dim]});
rhsSqueezedValue *= rhsBroadcastedShape[dim];
}
}
rhsSqueezedElems.push_back(
{maxInputRank - 1, rhsBroadcastedShape[maxInputRank - 1]});
rhsSqueezedValue *= rhsBroadcastedShape[maxInputRank - 1];
for (uint32_t i = 0; i < rhsSqueezedElems.size(); i++) {
transposedRhsShape.push_back(rhsSqueezedElems[i].shape);
transposedRhsDims.push_back(rhsSqueezedElems[i].dim);
}
auto transposedRhsType =
RankedTensorType::get(transposedRhsShape, rhsElemTy);
if (hasDynamicDims)
rhsSqueezedValue = ShapedType::kDynamicSize;
SmallVector<int64_t> newRhsShape({commonValue,
rhsBroadcastedShape[maxInputRank - 2],
rhsSqueezedValue});
auto newRhsType = RankedTensorType::get(newRhsShape, rhsElemTy);
bool rhsNeedsTranspose = isTransposeRequired(transposedRhsDims);
auto transposedRhsValue = rankBroadcastedRhs;
if (rhsNeedsTranspose) {
llvm::Optional<Value> transposedRhsDimsConst =
tosa::getConstTensor<int32_t>(
rewriter, op,
/*vec=*/transposedRhsDims,
/*shape=*/{static_cast<int32_t>(transposedRhsDims.size())});
transposedRhsValue =
rewriter
.create<tosa::TransposeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(transposedRhsType),
rankBroadcastedRhs, transposedRhsDimsConst.getValue())
.getResult();
}
// reshape
matmulRhs = rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
newRhsType),
transposedRhsValue, rewriter.getI64ArrayAttr(newRhsShape));
}
auto matmulLhsShape =
matmulLhs.getType().template cast<RankedTensorType>().getShape();
auto matmulRhsShape =
matmulRhs.getType().template cast<RankedTensorType>().getShape();
// The reshape/transpose should ensure the tosa.matmul always has same
// batch size for either matrix. If if shapes are dynamic, they'll be
// appropriately handled.
assert(matmulLhsShape[0] == matmulRhsShape[0] &&
"tosa.matmul needs same batchsize on LHS and RHS");
SmallVector<int64_t> matmulOutputShape(
{matmulLhsShape[0], matmulLhsShape[1], matmulRhsShape[2]});
Type outputElemTy;
if (lhsElemTy.isa<mlir::FloatType>()) {
outputElemTy = lhsElemTy;
} else { // qint8 emits i32 matmul output
outputElemTy = rewriter.getIntegerType(32);
}
auto mmOutputTy = RankedTensorType::get(matmulOutputShape, outputElemTy);
auto mmOpResult =
rewriter
.create<tosa::MatMulOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
mmOutputTy),
matmulLhs, matmulRhs)
.getResult();
// Perform the reshape to output shape. This is always required unless both
// inputs are rank=3, in which case the tosa.matmul output itself is
// correctly shaped.
bool performOpReshape = !(lhsRank == 3 && rhsRank == 3);
auto outputTy = OpConversionPattern<AtenOpT>::getTypeConverter()
->convertType(op.getType())
.template cast<RankedTensorType>();
if (performOpReshape) {
// Since the output shape may be unknown, we construct it
// independently and reshape. Otherwise reshape may be expressed for
// an unknown to-be-inferred output shape. The final tensor.cast
// reshapes the known shape to the desired output shape.
auto computeOpShape = [&](SmallVector<int64_t> &reshapedOpShape,
SmallVector<int32_t> &transposedOpDims,
SmallVector<int64_t> &transposedOpShapes) {
if (maxInputRank == 1)
return;
if (maxInputRank == 2) {
if (lhsRank == 2)
reshapedOpShape.push_back(lhsShape[0]);
if (rhsRank == 2)
reshapedOpShape.push_back(rhsShape[1]);
return;
}
// Step: Construct the output transpose/reshape information
// First the common_dims
for (uint32_t i = 0; i < commonElems.size(); i++) {
reshapedOpShape.push_back(commonElems[i].shape);
transposedOpDims.push_back(commonElems[i].dim);
}
// Then the LHS squeezed dims
for (uint32_t i = 0; i < lhsSqueezedElems.size() - 1; i++) {
// Only dims that don't broadcast - broadcasting ones come from the
// other input.
if (lhsSqueezedElems[i].shape != 1) {
reshapedOpShape.push_back(lhsSqueezedElems[i].shape);
transposedOpDims.push_back(lhsSqueezedElems[i].dim);
}
}
// The last squeezed dim is lhs[-2] which needs to be
// checked separately for broadcasting
if (lhsRank > 1) {
reshapedOpShape.push_back(lhsBroadcastedShape[maxInputRank - 2]);
transposedOpDims.push_back(maxInputRank - 2);
}
// then the RHS squeezed dims except rhs[-1] which is handled like
// lhs[-2]
for (uint32_t i = 0; i < rhsSqueezedElems.size() - 1; i++) {
if (rhsSqueezedElems[i].shape != 1) {
reshapedOpShape.push_back(rhsSqueezedElems[i].shape);
transposedOpDims.push_back(rhsSqueezedElems[i].dim);
}
}
// rhs[-1]
if (rhsRank > 1) {
reshapedOpShape.push_back(rhsBroadcastedShape[maxInputRank - 1]);
transposedOpDims.push_back(maxInputRank - 1);
}
// Final transposed output shape construction
for (uint32_t i = 0; i < maxInputRank - 2; i++) {
if (lhsBroadcastedTy.isDynamicDim(i)) {
transposedOpShapes.push_back(ShapedType::kDynamicSize);
} else {
if (lhsBroadcastedShape[i] == rhsBroadcastedShape[i]) {
transposedOpShapes.push_back(lhsBroadcastedShape[i]);
} else {
transposedOpShapes.push_back(lhsBroadcastedShape[i] == 1
? rhsBroadcastedShape[i]
: lhsBroadcastedShape[i]);
}
}
}
if (lhsRank > 1)
transposedOpShapes.push_back(lhsBroadcastedShape[maxInputRank - 2]);
if (rhsRank > 1)
transposedOpShapes.push_back(rhsBroadcastedShape[maxInputRank - 1]);
return;
};
SmallVector<int64_t> reshapedOpShape, transposedOpShape;
SmallVector<int32_t> transposedOpDims;
computeOpShape(reshapedOpShape, transposedOpDims, transposedOpShape);
bool opNeedsTranspose = isTransposeRequired(transposedOpDims);
// Perform reshape
auto reshapedOpType =
RankedTensorType::get(reshapedOpShape, outputElemTy);
auto reshapedOp = rewriter.create<tosa::ReshapeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
reshapedOpType),
mmOpResult, rewriter.getI64ArrayAttr(reshapedOpShape));
if (opNeedsTranspose) {
llvm::Optional<Value> transposedOpShapeConst =
tosa::getConstTensor<int32_t>(
rewriter, op,
/*vec=*/transposedOpDims,
/*shape=*/{static_cast<int32_t>(transposedOpDims.size())});
auto transposedOpType =
RankedTensorType::get(transposedOpShape, outputElemTy);
auto transposedOp = rewriter.create<tosa::TransposeOp>(
op->getLoc(),
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
transposedOpType),
reshapedOp.getResult(), transposedOpShapeConst.getValue());
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputTy, transposedOp);
} else {
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputTy, reshapedOp);
}
} else {
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputTy, mmOpResult);
}
return success();
}
};
template <>
LogicalResult ConvertAtenOp<AtenRsubScalarOp>::matchAndRewrite(
AtenRsubScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto self = adaptor.self();
auto otherScalar = op.other();
auto alphaScalar = op.alpha();
auto selfTy = self.getType().template cast<RankedTensorType>();
if (!selfTy)
return op.emitError("Only ranked tensor types supported in TOSA Rsub");
if (!selfTy.getElementType().isa<mlir::FloatType>())
return op.emitError("Only floating-point datatype legalization supported");
Value otherTensor, alphaTensor;
if (failed(torchScalarToTosaTensor(rewriter, op.getOperation(), otherScalar,
otherTensor, selfTy.getElementType())))
return op.emitError("Currently only scalar constants are supported for "
"conversion in TOSA Rsub operation");
if (failed(torchAlphaToTosaTensor(rewriter, op.getOperation(), alphaScalar,
alphaTensor, selfTy.getElementType(),
true)))
return failure();
auto multTensor = rewriter.create<tosa::MulOp>(
op->getLoc(), getTypeConverter()->convertType(op.getType()), self,
alphaTensor, /*shift*/ 0);
rewriter.replaceOpWithNewOp<tosa::SubOp>(
op, getTypeConverter()->convertType(op.getType()), otherTensor,
multTensor);
return success();
}
} // namespace
// -----------------------------------------------------------------------------
// TorchToTosa Pass
// -----------------------------------------------------------------------------
namespace {
class ConvertTorchToTosa : public ConvertTorchToTosaBase<ConvertTorchToTosa> {
public:
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<tosa::TosaDialect>();
registry.insert<tensor::TensorDialect>();
registry.insert<arith::ArithmeticDialect>();
TorchConversion::getBackendTypeConversionDependentDialects(registry);
}
void runOnOperation() override {
MLIRContext *context = &getContext();
ConversionTarget target(*context);
target.addLegalDialect<tosa::TosaDialect, tensor::TensorDialect,
arith::ArithmeticDialect>();
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
TorchConversion::setupBackendTypeConversion(target, typeConverter);
RewritePatternSet patterns(context);
#define INSERT_UNARY_FPONLY_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenUnaryFPOnlyOp<AtenOp, TosaOp>>(typeConverter, \
context);
INSERT_UNARY_FPONLY_PATTERN(AtenLogOp, tosa::LogOp)
INSERT_UNARY_FPONLY_PATTERN(AtenExpOp, tosa::ExpOp)
#undef INSERT_UNARY_FPONLY_PATTERN
#define INSERT_UNARY_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenUnaryOp<AtenOp, TosaOp>>(typeConverter, context);
INSERT_UNARY_PATTERN(AtenNegOp, tosa::NegateOp)
INSERT_UNARY_PATTERN(AtenFloorOp, tosa::FloorOp)
INSERT_UNARY_PATTERN(AtenRsqrtOp, tosa::RsqrtOp)
INSERT_UNARY_PATTERN(AtenBitwiseNotOp, tosa::BitwiseNotOp)
INSERT_UNARY_PATTERN(AtenCeilOp, tosa::CeilOp)
INSERT_UNARY_PATTERN(AtenReciprocalOp, tosa::ReciprocalOp)
#undef INSERT_UNARY_PATTERN
#define INSERT_BINARY_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenBinaryOp<AtenOp, TosaOp>>(typeConverter, context);
INSERT_BINARY_PATTERN(AtenMaximumOp, tosa::MaximumOp)
INSERT_BINARY_PATTERN(AtenMinimumOp, tosa::MinimumOp)
#undef INSERT_BINARY_PATTERN
#define INSERT_BINARY_ADDSUB_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenAddSubOp<AtenOp, TosaOp>>(typeConverter, context);
INSERT_BINARY_ADDSUB_PATTERN(AtenAddTensorOp, tosa::AddOp)
INSERT_BINARY_ADDSUB_PATTERN(AtenAddScalarOp, tosa::AddOp)
INSERT_BINARY_ADDSUB_PATTERN(AtenSubTensorOp, tosa::SubOp)
INSERT_BINARY_ADDSUB_PATTERN(AtenSubScalarOp, tosa::SubOp)
#undef INSERT_BINARY_ADDSUB_PATTERN
#define INSERT_BINARY_COMPARE_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenCompareOp<AtenOp, TosaOp>>(typeConverter, context);
INSERT_BINARY_COMPARE_PATTERN(AtenGtTensorOp, tosa::GreaterOp)
INSERT_BINARY_COMPARE_PATTERN(AtenGtScalarOp, tosa::GreaterOp)
INSERT_BINARY_COMPARE_PATTERN(AtenLtTensorOp, tosa::GreaterOp)
INSERT_BINARY_COMPARE_PATTERN(AtenLtScalarOp, tosa::GreaterOp)
INSERT_BINARY_COMPARE_PATTERN(AtenEqTensorOp, tosa::EqualOp)
INSERT_BINARY_COMPARE_PATTERN(AtenEqScalarOp, tosa::EqualOp)
#undef INSERT_BINARY_COMPARE_PATTERN
#define INSERT_BINARY_MUL_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenMulOp<AtenOp>>(typeConverter, context);
INSERT_BINARY_MUL_PATTERN(AtenMulTensorOp);
INSERT_BINARY_MUL_PATTERN(AtenMulScalarOp);
#undef INSERT_BINARY_MUL_PATTERN
#define INSERT_BINARY_DIV_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenDivOp<AtenOp>>(typeConverter, context);
INSERT_BINARY_DIV_PATTERN(AtenDivTensorOp);
INSERT_BINARY_DIV_PATTERN(AtenDivScalarOp);
#undef INSERT_BINARY_DIV_PATTERN
#define INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenMultipleDimsReductionOp<AtenOp, ConversionFunc>>( \
typeConverter, context);
INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenMeanDimOp,
mlir::tosa::convertReduceMeanOp)
INSERT_NDIMS_REDUCTION_OP_PATTERN(AtenSumDimIntListOp,
mlir::tosa::convertReduceSumOp)
#undef INSERT_NDIMS_REDUCTION_OP_PATTERN
#define INSERT_ONEDIM_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOneDimReductionOp<AtenOp, ConversionFunc>>( \
typeConverter, context);
INSERT_ONEDIM_REDUCTION_OP_PATTERN(AtenAnyDimOp,
mlir::tosa::convertReduceAnyOp)
#undef INSERT_ONEDIM_REDUCTION_OP_PATTERN
#define INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenOp, ConversionFunc) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenAllDimsReductionOp<AtenOp, ConversionFunc>>( \
typeConverter, context);
INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenAllOp,
mlir::tosa::convertReduceAllOp)
INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenAnyOp,
mlir::tosa::convertReduceAnyOp)
INSERT_ALLDIMS_REDUCTION_OP_PATTERN(AtenSumOp,
mlir::tosa::convertReduceSumOp)
#undef INSERT_ALLDIMS_REDUCTION_OP_PATTERN
#define INSERT_SQUEEZE_OP_PATTERN(AtenOp, TemplateForm) \
target.addIllegalOp<AtenOp>(); \
patterns.add<TemplateForm<AtenOp>>(typeConverter, context);
INSERT_SQUEEZE_OP_PATTERN(AtenSqueezeOp, ConvertAtenSqueezeAllDimsOp)
INSERT_SQUEEZE_OP_PATTERN(AtenSqueezeDimOp, ConvertAtenSqueezeOneDimOp)
#undef INSERT_SQUEEZE_OP_PATTERN
#define INSERT_MATMUL_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenMatMulOp<AtenOp>>(typeConverter, context);
INSERT_MATMUL_ATENOP_PATTERN(AtenMatmulOp);
INSERT_MATMUL_ATENOP_PATTERN(AtenMmOp);
INSERT_MATMUL_ATENOP_PATTERN(AtenBmmOp);
#undef INSERT_MATMUL_ATEMOP_PATTERN
#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
INSERT_ATENOP_PATTERN(AtenTanhOp);
INSERT_ATENOP_PATTERN(AtenSigmoidOp);
INSERT_ATENOP_PATTERN(AtenReluOp);
INSERT_ATENOP_PATTERN(AtenArgmaxOp);
INSERT_ATENOP_PATTERN(AtenPowTensorScalarOp);
INSERT_ATENOP_PATTERN(AtenRsubScalarOp);
#undef INSERT_ATENOP_PATTERN
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::torch::createConvertTorchToTosaPass() {
return std::make_unique<ConvertTorchToTosa>();
}