torch-mlir/python/torch_mlir_e2e_test/configs
Sean Silva 7731211d02 Remove eager_mode
This was an experimental attempt at rolling out own op-by-op executor
with `__torch_dispatch__`, but it proved difficult to make it robust.
Op-by-op execution is very easy to implement robustly now with the
PyTorch 2.0 stack, so we don't need eager_mode.

Downstream users were using eager_mode to implement lockstep numerical
accuracy debuggers. We implemented the same functionality with
TorchDynamo in https://github.com/llvm/torch-mlir/pull/1681 so now there
is not much reason to continue maintaining it.
2022-12-09 03:50:00 -08:00
..
__init__.py Remove eager_mode 2022-12-09 03:50:00 -08:00
lazy_tensor_core.py Remove "torchscript" association from the e2e framework. 2022-08-29 14:10:03 -07:00
linalg_on_tensors_backend.py Remove "torchscript" association from the e2e framework. 2022-08-29 14:10:03 -07:00
mhlo_backend.py Remove "torchscript" association from the e2e framework. 2022-08-29 14:10:03 -07:00
native_torch.py [cleanup] Make diagnostics better 2022-11-17 02:09:54 -08:00
torchdynamo.py [torchdynamo] Add ResNet18 example with TorchDynamo 2022-12-07 09:25:27 -08:00
torchscript.py Remove "torchscript" association from the e2e framework. 2022-08-29 14:10:03 -07:00
tosa_backend.py Remove "torchscript" association from the e2e framework. 2022-08-29 14:10:03 -07:00
utils.py Remove "torchscript" association from the e2e framework. 2022-08-29 14:10:03 -07:00