mirror of https://github.com/llvm/torch-mlir
291 lines
11 KiB
C++
291 lines
11 KiB
C++
//===- AdjustCallingConventions.cpp ------------------------*- C++-*-===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// Map from func name and arg index to the type bound for that arg.
|
|
// This is needed because to rewrite calls, we need the non-local information
|
|
// from the func definition.
|
|
// We also benefit from populating this all at once, which avoids ordering
|
|
// issues between rewriting of func ops vs call ops.
|
|
using TypeBoundMap = DenseMap<std::pair<StringRef, int>, Type>;
|
|
|
|
namespace {
|
|
class AdjustCallingConventionForFunc
|
|
: public OpConversionPattern<func::FuncOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::FuncOp func, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
MLIRContext *context = func.getContext();
|
|
auto typeBoundIdent = StringAttr::get(context, "torch.type_bound");
|
|
TypeConverter::SignatureConversion conversion(func.getNumArguments());
|
|
|
|
// The TypeConverter hooks for type conversion are "context free", so we
|
|
// cannot use the usual helpers here for populating SignatureConversion and
|
|
// new result types.
|
|
//
|
|
// The incoporation of the torch.type_bound arg attr is context-dependent.
|
|
|
|
for (auto type : llvm::enumerate(func.getArgumentTypes())) {
|
|
if (type.value().isa<NonValueTensorType>()) {
|
|
auto typeBoundAttr =
|
|
func.getArgAttrOfType<TypeAttr>(type.index(), typeBoundIdent);
|
|
Type bound = typeBoundAttr ? typeBoundAttr.getValue() : Type();
|
|
if (!bound.isa<ValueTensorType>())
|
|
return rewriter.notifyMatchFailure(
|
|
func, "unimplemented: preserving aliasing for non-value-semantic "
|
|
"type bounds");
|
|
conversion.addInputs(type.index(), typeBoundAttr
|
|
? typeBoundAttr.getValue()
|
|
: type.value());
|
|
continue;
|
|
} else if (auto none = type.value().dyn_cast<Torch::NoneType>()) {
|
|
continue;
|
|
}
|
|
// TODO: add tuple type.
|
|
conversion.addInputs(type.index(), type.value());
|
|
}
|
|
rewriter.applySignatureConversion(&func.getBody(), conversion,
|
|
typeConverter);
|
|
|
|
SmallVector<Type> newResultTypes;
|
|
for (auto type : func.getFunctionType().getResults()) {
|
|
if (auto none = type.dyn_cast<Torch::NoneType>()) {
|
|
continue;
|
|
}
|
|
if (auto tuple = type.dyn_cast<Torch::TupleType>()) {
|
|
llvm::append_range(newResultTypes, tuple.getContainedTypes());
|
|
continue;
|
|
}
|
|
newResultTypes.push_back(type);
|
|
}
|
|
rewriter.updateRootInPlace(func, [&] {
|
|
func.setType(FunctionType::get(
|
|
getContext(), conversion.getConvertedTypes(), newResultTypes));
|
|
// Clear out the type bounds, now that the type incorporates them.
|
|
for (int i = 0, e = func.getNumArguments(); i != e; i++)
|
|
func.removeArgAttr(i, typeBoundIdent);
|
|
});
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class AdjustCallingConventionForCall
|
|
: public OpConversionPattern<func::CallOp> {
|
|
public:
|
|
AdjustCallingConventionForCall(TypeConverter &converter, MLIRContext *context,
|
|
TypeBoundMap &typeBoundMap)
|
|
: OpConversionPattern<func::CallOp>(converter, context),
|
|
typeBoundMap(typeBoundMap) {}
|
|
LogicalResult
|
|
matchAndRewrite(func::CallOp call, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
SmallVector<Type> convertedResults;
|
|
if (failed(typeConverter->convertTypes(call.getResultTypes(),
|
|
convertedResults)))
|
|
return failure();
|
|
|
|
SmallVector<Value> newOperands;
|
|
for (auto operand : llvm::enumerate(adaptor.getOperands())) {
|
|
if (operand.value().getType().isa<Torch::NoneType>())
|
|
continue;
|
|
auto it = typeBoundMap.find({call.getCallee(), operand.index()});
|
|
if (it != typeBoundMap.end()) {
|
|
if (auto valueTensorType = it->second.dyn_cast<ValueTensorType>()) {
|
|
newOperands.push_back(copyTensorToType(
|
|
rewriter, call->getLoc(), valueTensorType, operand.value()));
|
|
continue;
|
|
} else {
|
|
return rewriter.notifyMatchFailure(
|
|
call, "unimplemented: preserving aliasing for non-value-semantic "
|
|
"type bounds");
|
|
}
|
|
}
|
|
newOperands.push_back(operand.value());
|
|
}
|
|
|
|
func::CallOp newCall = rewriter.create<func::CallOp>(
|
|
call.getLoc(), call.getCallee(), convertedResults, newOperands);
|
|
int newOpResultIdx = 0;
|
|
SmallVector<Value> newResults;
|
|
for (auto type : call.getResultTypes()) {
|
|
if (type.isa<Torch::NoneType>()) {
|
|
newResults.push_back(
|
|
rewriter.create<ConstantNoneOp>(call.getLoc(), type));
|
|
continue;
|
|
}
|
|
if (type.isa<Torch::TupleType>()) {
|
|
newResults.push_back(rewriter.create<PrimTupleConstructOp>(
|
|
call.getLoc(), type, newCall.getResults()));
|
|
continue;
|
|
}
|
|
newResults.push_back(newCall.getResult(newOpResultIdx++));
|
|
}
|
|
rewriter.replaceOp(call, newResults);
|
|
return success();
|
|
}
|
|
|
|
private:
|
|
TypeBoundMap &typeBoundMap;
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class AdjustCallingConventionForReturn
|
|
: public OpConversionPattern<func::ReturnOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
SmallVector<Value> newOperands;
|
|
for (auto operand : adaptor.getOperands()) {
|
|
if (!operand)
|
|
continue;
|
|
if (operand.getType().isa<Torch::NoneType>())
|
|
continue;
|
|
if (auto tuple = operand.getType().dyn_cast<Torch::TupleType>()) {
|
|
Location loc = op.getLoc();
|
|
for (auto en : llvm::enumerate(tuple.getContainedTypes())) {
|
|
auto i = rewriter.create<ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(en.index()));
|
|
newOperands.push_back(
|
|
rewriter.create<PrimTupleIndexOp>(loc, en.value(), operand, i));
|
|
}
|
|
continue;
|
|
}
|
|
newOperands.push_back(operand);
|
|
}
|
|
rewriter.replaceOpWithNewOp<func::ReturnOp>(op, newOperands);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static LogicalResult adjustCallingConventions(func::FuncOp func,
|
|
TypeBoundMap &typeBoundMap) {
|
|
MLIRContext *context = func.getContext();
|
|
RewritePatternSet patterns(context);
|
|
TypeConverter typeConverter;
|
|
typeConverter.addConversion([](Type type) { return type; });
|
|
typeConverter.addConversion(
|
|
[](Torch::TupleType type,
|
|
SmallVectorImpl<Type> &types) -> Optional<LogicalResult> {
|
|
llvm::append_range(types, type.getContainedTypes());
|
|
return success();
|
|
});
|
|
typeConverter.addConversion(
|
|
[](Torch::NoneType type,
|
|
SmallVectorImpl<Type> &types) -> Optional<LogicalResult> {
|
|
return success();
|
|
});
|
|
|
|
typeConverter.addArgumentMaterialization(
|
|
[](OpBuilder &builder, Torch::BaseTensorType type, ValueRange inputs,
|
|
Location loc) -> Value {
|
|
assert(inputs.size() == 1);
|
|
assert(inputs[0].getType().isa<BaseTensorType>());
|
|
return copyTensorToType(builder, loc, type, inputs[0]);
|
|
});
|
|
patterns.add<AdjustCallingConventionForFunc>(typeConverter, context);
|
|
patterns.add<AdjustCallingConventionForCall>(typeConverter, context,
|
|
typeBoundMap);
|
|
patterns.add<AdjustCallingConventionForReturn>(typeConverter, context);
|
|
|
|
ConversionTarget target(*context);
|
|
target.addDynamicallyLegalOp<func::FuncOp>([](func::FuncOp func) {
|
|
for (int i = 0, e = func.getNumArguments(); i != e; i++) {
|
|
if (func.getArgAttr(i, "torch.type_bound"))
|
|
return false;
|
|
if (func.getArgumentTypes()[i].isa<Torch::NoneType>())
|
|
return false;
|
|
}
|
|
for (int i = 0, e = func.getNumResults(); i != e; i++) {
|
|
if (func.getFunctionType().getResults()[i].isa<Torch::NoneType>())
|
|
return false;
|
|
}
|
|
return true;
|
|
});
|
|
// The dynamic legality conditions for call and return are a pain to write...
|
|
// Just run the patterns once and call it a day.
|
|
//
|
|
// Bug for doing this better https://bugs.llvm.org/show_bug.cgi?id=49812
|
|
DenseSet<Operation *> opsInOriginalProgram;
|
|
func.walk(
|
|
[&](func::CallOp op) { opsInOriginalProgram.insert(op.getOperation()); });
|
|
func.walk([&](func::ReturnOp op) {
|
|
opsInOriginalProgram.insert(op.getOperation());
|
|
});
|
|
target.addDynamicallyLegalOp<func::CallOp>([&](func::CallOp op) {
|
|
return !opsInOriginalProgram.contains(op.getOperation());
|
|
});
|
|
target.addDynamicallyLegalOp<func::ReturnOp>([&](func::ReturnOp op) {
|
|
return !opsInOriginalProgram.contains(op.getOperation());
|
|
});
|
|
target.addLegalOp<CopyToNonValueTensorOp, CopyToValueTensorOp>();
|
|
target.addLegalOp<TensorStaticInfoCastOp>();
|
|
target.addLegalOp<ConstantNoneOp>();
|
|
target.addLegalOp<ConstantIntOp>();
|
|
target.addLegalOp<PrimTupleIndexOp>();
|
|
target.addLegalOp<PrimTupleConstructOp>();
|
|
// We don't know how to rewrite it, so mark it as illegal.
|
|
target.addIllegalOp<func::CallIndirectOp>();
|
|
if (failed(applyPartialConversion(func.getOperation(), target,
|
|
std::move(patterns))))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class AdjustCallingConventionsPass
|
|
: public AdjustCallingConventionsBase<AdjustCallingConventionsPass> {
|
|
void runOnOperation() override {
|
|
auto module = getOperation();
|
|
TypeBoundMap typeBoundMap;
|
|
for (auto func : module.getOps<func::FuncOp>()) {
|
|
for (int i = 0, e = func.getNumArguments(); i != e; i++) {
|
|
auto typeBoundAttr =
|
|
func.getArgAttrOfType<TypeAttr>(i, "torch.type_bound");
|
|
if (!typeBoundAttr)
|
|
continue;
|
|
typeBoundMap[{func.getName(), i}] = typeBoundAttr.getValue();
|
|
}
|
|
}
|
|
for (auto func : module.getOps<func::FuncOp>()) {
|
|
if (failed(adjustCallingConventions(func, typeBoundMap)))
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
mlir::torch::Torch::createAdjustCallingConventionsPass() {
|
|
return std::make_unique<AdjustCallingConventionsPass>();
|
|
}
|