mirror of https://github.com/llvm/torch-mlir
811 lines
36 KiB
C++
811 lines
36 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "PopulatePatterns.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "torch-mlir/Conversion/TorchToLinalg/Utils.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// Checks the validity of pooling parameters and stores them in the respective
|
|
// vector.
|
|
template <typename OpTy>
|
|
static LogicalResult
|
|
checkAndGetPoolingParameters(OpTy op, ConversionPatternRewriter &rewriter,
|
|
const TypeConverter *typeConverter, bool &ceilMode,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts) {
|
|
// Pattern match against the op's original operands, because otherwise we
|
|
// will get the lowered version of the operands which is harder to pattern
|
|
// match.
|
|
SmallVector<Value> kernelSizeTorchInt;
|
|
if (!getListConstructElements(op.getKernelSize(), kernelSizeTorchInt)) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"unimplemented: the kernel size is "
|
|
"not constructed from ListConstruct");
|
|
}
|
|
kernelSizeIntValues = getTypeConvertedValues(
|
|
rewriter, op.getLoc(), typeConverter, kernelSizeTorchInt);
|
|
|
|
if (!matchPattern(op.getStride(), m_TorchListOfConstantInts(strideInts)))
|
|
return rewriter.notifyMatchFailure(op, "only support constant int strides");
|
|
// If `stride` is not specified by the user, it is assigned the value of empty
|
|
// list during import. For such a case, the stride value is the kernel size.
|
|
// See:
|
|
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
|
|
if (strideInts.empty()) {
|
|
if (!matchPattern(op.getKernelSize(),
|
|
m_TorchListOfConstantInts(strideInts))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "if stride is the empty list, kernel_size must be a list of "
|
|
"constant ints");
|
|
}
|
|
}
|
|
|
|
if (!matchPattern(op.getPadding(), m_TorchListOfConstantInts(paddingInts)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant int paddings");
|
|
if (!matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant bool ceil_mode");
|
|
return success();
|
|
}
|
|
|
|
static Value computeOutputTensor(Operation *op, ConversionPatternRewriter &rewriter,
|
|
Value self, int64_t dimensionality, bool ceilMode,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts,
|
|
SmallVectorImpl<int64_t> &dilationInts,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<Value> &outTensorShape, Value initValue) {
|
|
Type elementType = self.getType().cast<RankedTensorType>().getElementType();
|
|
Location loc = op->getLoc();
|
|
|
|
Value N = getDimOp(rewriter, loc, self, 0);
|
|
Value C = getDimOp(rewriter, loc, self, 1);
|
|
|
|
SmallVector<Value> paddingIntValues =
|
|
getAsConstantIntValues(rewriter, loc, paddingInts);
|
|
SmallVector<Value> dilationIntValues =
|
|
getAsConstantIntValues(rewriter, loc, dilationInts);
|
|
SmallVector<Value> strideIntValues =
|
|
getAsConstantIntValues(rewriter, loc, strideInts);
|
|
|
|
// Get dimension size for each dimension and calculate output size
|
|
for (int64_t i = dimensionality - 1; i > -1; --i) {
|
|
Value dimSize = getDimOp(rewriter, loc, self, i + 2);
|
|
Value outDim = torch_to_linalg::getOutputDimForConvOps(
|
|
rewriter, loc, dimSize, paddingIntValues[i], dilationIntValues[i],
|
|
kernelSizeIntValues[i], strideIntValues[i], ceilMode);
|
|
outTensorShape.insert(outTensorShape.begin(), {outDim});
|
|
}
|
|
|
|
// Create output tensor initialized with smallest floating point value.
|
|
outTensorShape.insert(outTensorShape.begin(), {N, C});
|
|
return createInitTensor(rewriter, loc, outTensorShape, elementType,
|
|
initValue);
|
|
}
|
|
|
|
static Value padInputTensor(Operation *op, ConversionPatternRewriter &rewriter,
|
|
Value self, bool ceilMode, int64_t dimensionality,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts,
|
|
Value initValue) {
|
|
SmallVector<int64_t> lowPaddingIncludingNC = {0, 0};
|
|
lowPaddingIncludingNC.append(paddingInts);
|
|
SmallVector<int64_t> highPaddingIncludingNC = lowPaddingIncludingNC;
|
|
|
|
if (ceilMode) {
|
|
for (int64_t i = 0; i < dimensionality; ++i) {
|
|
highPaddingIncludingNC[i + 2] += strideInts[i];
|
|
}
|
|
}
|
|
|
|
return torch_to_linalg::getPaddedTensor(op, rewriter, self,
|
|
lowPaddingIncludingNC,
|
|
highPaddingIncludingNC, initValue);
|
|
}
|
|
|
|
// Creates a pooling operation based on the type specified by `OpTy` and
|
|
// arguments passed.
|
|
template <typename OpTy>
|
|
static LogicalResult createPoolingOp(
|
|
Operation *op, ConversionPatternRewriter &rewriter, Value self,
|
|
bool supportNonFPInput, bool ceilMode, int64_t dimensionality,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<int64_t> &strideInts, SmallVectorImpl<int64_t> &paddingInts,
|
|
SmallVectorImpl<int64_t> &dilationInts, Attribute initValueAttr,
|
|
SmallVectorImpl<Value> &outTensorShape, Value &paddedInput, Value &result) {
|
|
Location loc = op->getLoc();
|
|
Type elementType = self.getType().cast<RankedTensorType>().getElementType();
|
|
if (!elementType.isa<mlir::FloatType>() && !supportNonFPInput)
|
|
return op->emitError("unimplemented: non-floating point type");
|
|
|
|
Value initValue =
|
|
rewriter.create<arith::ConstantOp>(loc, cast<TypedAttr>(initValueAttr));
|
|
|
|
paddedInput = padInputTensor(op, rewriter, self, ceilMode, dimensionality,
|
|
strideInts, paddingInts, initValue);
|
|
|
|
auto outTensorInitialized = computeOutputTensor(
|
|
op, rewriter, self, dimensionality, ceilMode, strideInts, paddingInts,
|
|
dilationInts, kernelSizeIntValues, outTensorShape, initValue);
|
|
|
|
auto stridesAttr = rewriter.getI64VectorAttr(strideInts);
|
|
auto dilationAttr = rewriter.getI64VectorAttr(dilationInts);
|
|
auto shape = castIntVectorToIndexVector(rewriter, loc, kernelSizeIntValues);
|
|
Value windowTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(shape), elementType);
|
|
|
|
result = rewriter
|
|
.create<OpTy>(loc, outTensorInitialized.getType(),
|
|
ValueRange{paddedInput, windowTensor},
|
|
outTensorInitialized, stridesAttr, dilationAttr)
|
|
.getResult(0);
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
template <typename OpTy>
|
|
class ConvertAtenMaxPoolOp : public OpConversionPattern<OpTy> {
|
|
using OpConversionPattern<OpTy>::OpConversionPattern;
|
|
|
|
private:
|
|
template <typename T> struct DimensionTraits;
|
|
|
|
template <> struct DimensionTraits<AtenMaxPool2dOp> {
|
|
static const int64_t Dim = 2;
|
|
};
|
|
|
|
template <> struct DimensionTraits<AtenMaxPool3dOp> {
|
|
static const int64_t Dim = 3;
|
|
};
|
|
|
|
static const int64_t Dim = DimensionTraits<OpTy>::Dim;
|
|
|
|
LogicalResult createPoolingMax3D(AtenMaxPool3dOp &op,
|
|
typename OpTy::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter,
|
|
SmallVectorImpl<Value> &kernelSizeIntValues,
|
|
SmallVectorImpl<int64_t> &strideInts,
|
|
SmallVectorImpl<int64_t> &paddingInts,
|
|
SmallVectorImpl<int64_t> &dilationInts,
|
|
bool ceilMode) const {
|
|
SmallVector<Value, 5> outTensorShape;
|
|
Value self = adaptor.getSelf();
|
|
Type elementType = self.getType().cast<RankedTensorType>().getElementType();
|
|
TypedAttr smallestFPValueAttr = rewriter.getFloatAttr(
|
|
elementType,
|
|
APFloat::getInf(elementType.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
Value initValue =
|
|
rewriter.create<arith::ConstantOp>(op->getLoc(), smallestFPValueAttr);
|
|
|
|
Value paddedInput = padInputTensor(op, rewriter, self, ceilMode, 3,
|
|
strideInts, paddingInts, initValue);
|
|
|
|
auto outTensorInitialized = computeOutputTensor(
|
|
op, rewriter, self, 3, ceilMode, strideInts, paddingInts, dilationInts,
|
|
kernelSizeIntValues, outTensorShape, initValue);
|
|
|
|
auto shape =
|
|
castIntVectorToIndexVector(rewriter, op->getLoc(), kernelSizeIntValues);
|
|
Value windowTensor = rewriter.create<tensor::EmptyOp>(
|
|
op->getLoc(), getAsOpFoldResult(shape), elementType);
|
|
|
|
MLIRContext *context = rewriter.getContext();
|
|
|
|
auto mapInput = mlir::AffineMap::get(
|
|
8, 0,
|
|
{
|
|
rewriter.getAffineDimExpr(0), // n
|
|
rewriter.getAffineDimExpr(1), // c
|
|
// dim_d * stride_d + kernal_d * dilation_d
|
|
rewriter.getAffineDimExpr(2) *
|
|
getAffineConstantExpr(strideInts[0], context) +
|
|
rewriter.getAffineDimExpr(5) *
|
|
getAffineConstantExpr(dilationInts[0], context),
|
|
// dim_h * stride_h + kernal_h * dilation_h
|
|
rewriter.getAffineDimExpr(3) *
|
|
getAffineConstantExpr(strideInts[1], context) +
|
|
rewriter.getAffineDimExpr(6) *
|
|
getAffineConstantExpr(dilationInts[1], context),
|
|
// dim_w * stride_w + kernal_w * dilation_w
|
|
rewriter.getAffineDimExpr(4) *
|
|
getAffineConstantExpr(strideInts[2], context) +
|
|
rewriter.getAffineDimExpr(7) *
|
|
getAffineConstantExpr(dilationInts[2], context),
|
|
},
|
|
context);
|
|
auto mapKernel =
|
|
mlir::AffineMap::get(8, 0,
|
|
{
|
|
rewriter.getAffineDimExpr(5), // kd
|
|
rewriter.getAffineDimExpr(6), // kh
|
|
rewriter.getAffineDimExpr(7) // kw
|
|
},
|
|
context);
|
|
auto mapOutput = mlir::AffineMap::get(
|
|
8, 0,
|
|
{rewriter.getAffineDimExpr(0), rewriter.getAffineDimExpr(1),
|
|
rewriter.getAffineDimExpr(2), rewriter.getAffineDimExpr(3),
|
|
rewriter.getAffineDimExpr(4)},
|
|
context);
|
|
auto iteratorTypes =
|
|
SmallVector<utils::IteratorType>(5, utils::IteratorType::parallel);
|
|
iteratorTypes.append(3, utils::IteratorType::reduction);
|
|
SmallVector<AffineMap> indexingMaps = {mapInput, mapKernel, mapOutput};
|
|
Value poolingOp =
|
|
rewriter
|
|
.create<linalg::GenericOp>(
|
|
op->getLoc(),
|
|
/* result types */ outTensorInitialized.getType(),
|
|
/* operands */ ValueRange({paddedInput, windowTensor}),
|
|
/* outputs */ outTensorInitialized,
|
|
/*indexingMaps=*/indexingMaps,
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value currentVal = args[0], accMaxValue = args[2];
|
|
Value max_result =
|
|
b.create<arith::MaximumFOp>(loc, currentVal, accMaxValue);
|
|
;
|
|
b.create<linalg::YieldOp>(loc, max_result);
|
|
})
|
|
.getResult(0);
|
|
Type newResultType = this->getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, poolingOp);
|
|
return success();
|
|
}
|
|
|
|
public:
|
|
LogicalResult
|
|
matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
const TypeConverter *typeConverter = this->getTypeConverter();
|
|
Value self = adaptor.getSelf();
|
|
int64_t selfRank = self.getType().cast<RankedTensorType>().getRank();
|
|
|
|
if (selfRank != Dim + 2)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: Does not support inputs with rank");
|
|
|
|
bool ceilMode;
|
|
SmallVector<Value, Dim> kernelSizeIntValues;
|
|
SmallVector<int64_t, Dim> strideInts, paddingInts, dilationInts;
|
|
if (!matchPattern(op.getDilation(),
|
|
m_TorchListOfConstantInts(dilationInts)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant int dilations");
|
|
|
|
if (failed(checkAndGetPoolingParameters<OpTy>(op, rewriter, typeConverter,
|
|
ceilMode, kernelSizeIntValues,
|
|
strideInts, paddingInts)))
|
|
return rewriter.notifyMatchFailure(op, "invalid pooling parameters");
|
|
|
|
Type elementType = self.getType().cast<RankedTensorType>().getElementType();
|
|
|
|
if constexpr (Dim == 2) {
|
|
SmallVector<Value, 4> outTensorShape;
|
|
// `maxpool2d` contains the result of maxpool2d operation over the input.
|
|
Value maxPool2d, paddedInput;
|
|
TypedAttr smallestFPValueAttr = rewriter.getFloatAttr(
|
|
elementType,
|
|
APFloat::getInf(
|
|
elementType.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
if (failed(createPoolingOp<linalg::PoolingNchwMaxOp>(
|
|
op, rewriter, self, /*supportNonFPInput=*/true, ceilMode,
|
|
/*dimensionality=*/2, kernelSizeIntValues, strideInts,
|
|
paddingInts, dilationInts, smallestFPValueAttr, outTensorShape,
|
|
paddedInput, maxPool2d)))
|
|
return rewriter.notifyMatchFailure(op, "unable to compute maxpool2d");
|
|
Type newResultType = this->getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, maxPool2d);
|
|
return success();
|
|
} else {
|
|
return createPoolingMax3D(op, adaptor, rewriter,
|
|
kernelSizeIntValues, strideInts, paddingInts,
|
|
dilationInts, ceilMode);
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Returns the result of maxpool2d over the input tensor. And the corresponding
|
|
// indices of the input tensor for the values of the result tensor.
|
|
//
|
|
// The result of the maxpool2d operation is calculated using the helper function
|
|
// written above. For finding the indices, we follow the below method:
|
|
//
|
|
// Let's say the input tensor is a 4-d tensor. The maxpool2d and indices will
|
|
// also be a 4-d tensor. Then:
|
|
// for i in range(N):
|
|
// for j in range(C):
|
|
// for m in range(Hout):
|
|
// for n in range(Wout):
|
|
// for p in range(kH):
|
|
// for r in range(kW):
|
|
// indexH = m * stride[0] + p * dilation[0]
|
|
// indexW = n * stride[0] + r * dilation[0]
|
|
// if paddedInput[i, j, indexH, indexW] ==
|
|
// maxPool2d[i, j, m, n]:
|
|
// indices[i, j, m, n] = (indexH - padding[0]) * W +
|
|
// (indexW - padding[1])
|
|
//
|
|
class ConvertAtenMaxPool2dWithIndicesOp
|
|
: public OpConversionPattern<AtenMaxPool2dWithIndicesOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenMaxPool2dWithIndicesOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = getTypeConverter();
|
|
Value self = adaptor.getSelf();
|
|
RankedTensorType selfType = self.getType().cast<RankedTensorType>();
|
|
Type elementType = selfType.getElementType();
|
|
RankedTensorType indicesRankedTensorType =
|
|
getTypeConverter()
|
|
->convertType(op->getResult(1).getType())
|
|
.cast<RankedTensorType>();
|
|
|
|
// TODO: Add support for 3D inputs.
|
|
if (selfType.getRank() == 3)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: only support 4D input");
|
|
|
|
bool ceilMode;
|
|
SmallVector<Value, 2> kernelSizeIntValues;
|
|
SmallVector<int64_t, 2> strideInts, paddingInts, dilationInts;
|
|
if (!matchPattern(op.getDilation(),
|
|
m_TorchListOfConstantInts(dilationInts)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support constant int dilations");
|
|
if (failed(checkAndGetPoolingParameters<AtenMaxPool2dWithIndicesOp>(
|
|
op, rewriter, typeConverter, ceilMode, kernelSizeIntValues,
|
|
strideInts, paddingInts)))
|
|
return rewriter.notifyMatchFailure(op, "invalid pooling parameters");
|
|
|
|
// `maxpool2d` contains the result of maxpool2d operation over the input.
|
|
auto smallestFPValueAttr = rewriter.getFloatAttr(
|
|
elementType,
|
|
APFloat::getInf(elementType.cast<mlir::FloatType>().getFloatSemantics(),
|
|
/*Negative=*/true));
|
|
Value maxPool2d, paddedInput;
|
|
SmallVector<Value, 4> outTensorShape;
|
|
if (failed(createPoolingOp<linalg::PoolingNchwMaxOp>(
|
|
op, rewriter, self, /*supportNonFPInput=*/false, ceilMode,
|
|
/*dimensionality=*/2, kernelSizeIntValues, strideInts, paddingInts,
|
|
dilationInts, smallestFPValueAttr, outTensorShape, paddedInput,
|
|
maxPool2d)))
|
|
return rewriter.notifyMatchFailure(op, "unable to compute maxpool2d");
|
|
|
|
Value cstMinusOne =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getI64IntegerAttr(-1));
|
|
Value indicesTensor =
|
|
createInitTensor(rewriter, loc, outTensorShape,
|
|
indicesRankedTensorType.getElementType(), cstMinusOne);
|
|
|
|
SmallVector<Value> kernelSize =
|
|
castIntVectorToIndexVector(rewriter, loc, kernelSizeIntValues);
|
|
SmallVector<Value> padding =
|
|
getAsConstantIndexValues(rewriter, loc, paddingInts);
|
|
SmallVector<Value> dilation =
|
|
getAsConstantIndexValues(rewriter, loc, dilationInts);
|
|
SmallVector<Value> stride =
|
|
getAsConstantIndexValues(rewriter, loc, strideInts);
|
|
|
|
Value windowTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(kernelSize),
|
|
indicesRankedTensorType.getElementType());
|
|
|
|
SmallVector<AffineExpr> inputExprs, outputExprs, kernelExprs;
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
inputExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
outputExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
}
|
|
kernelExprs.push_back(rewriter.getAffineDimExpr(4));
|
|
kernelExprs.push_back(rewriter.getAffineDimExpr(5));
|
|
|
|
// Here we have six dimensions, each corresponding to N, C, Hout, Wout, kH,
|
|
// and kW, respectively, as described in the algorithm above.
|
|
SmallVector<AffineMap> indexingMaps =
|
|
AffineMap::inferFromExprList({inputExprs, kernelExprs, outputExprs});
|
|
SmallVector<utils::IteratorType> iteratorTypes(
|
|
4, utils::IteratorType::parallel);
|
|
iteratorTypes.push_back(utils::IteratorType::reduction);
|
|
iteratorTypes.push_back(utils::IteratorType::reduction);
|
|
|
|
// Input format is : [N, C, H, W]
|
|
Value inputShapeW = getDimOp(rewriter, loc, self, 3);
|
|
|
|
Value indicesResult =
|
|
rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc, /*resultTensorTypes=*/indicesTensor.getType(),
|
|
/*inputs=*/ValueRange({maxPool2d, windowTensor}),
|
|
/*outputs=*/indicesTensor,
|
|
/*indexingMaps=*/indexingMaps,
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value maxVal = args[0], res = args[2];
|
|
|
|
Value i = b.create<linalg::IndexOp>(loc, 0);
|
|
Value j = b.create<linalg::IndexOp>(loc, 1);
|
|
Value m = b.create<linalg::IndexOp>(loc, 2);
|
|
Value n = b.create<linalg::IndexOp>(loc, 3);
|
|
Value p = b.create<linalg::IndexOp>(loc, 4);
|
|
Value r = b.create<linalg::IndexOp>(loc, 5);
|
|
|
|
Value mTimesStride =
|
|
b.create<arith::MulIOp>(loc, m, stride[0]);
|
|
Value pTimesDilation =
|
|
b.create<arith::MulIOp>(loc, p, dilation[0]);
|
|
Value indexH = b.create<arith::AddIOp>(loc, mTimesStride,
|
|
pTimesDilation);
|
|
Value nTimesStride =
|
|
b.create<arith::MulIOp>(loc, n, stride[1]);
|
|
Value rTimesDilation =
|
|
b.create<arith::MulIOp>(loc, r, dilation[1]);
|
|
Value indexW = b.create<arith::AddIOp>(loc, nTimesStride,
|
|
rTimesDilation);
|
|
Value input = b.create<tensor::ExtractOp>(
|
|
loc, paddedInput, ValueRange{i, j, indexH, indexW});
|
|
Value pred = b.create<arith::CmpFOp>(
|
|
loc, arith::CmpFPredicate::OEQ, input, maxVal);
|
|
|
|
Value indexHMinusPadding =
|
|
b.create<arith::SubIOp>(loc, indexH, padding[0]);
|
|
Value indexWMinusPadding =
|
|
b.create<arith::SubIOp>(loc, indexW, padding[1]);
|
|
Value outIndex = b.create<arith::MulIOp>(
|
|
loc, indexHMinusPadding, inputShapeW);
|
|
outIndex = b.create<arith::AddIOp>(loc, outIndex,
|
|
indexWMinusPadding);
|
|
Value result = b.create<arith::SelectOp>(
|
|
loc, pred, castIndexToInt64(b, loc, outIndex), res);
|
|
|
|
Value predInvalidIndex = b.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, res, cstMinusOne);
|
|
Value out = b.create<arith::SelectOp>(loc, predInvalidIndex,
|
|
result, res);
|
|
|
|
b.create<linalg::YieldOp>(loc, out);
|
|
})
|
|
.getResult(0);
|
|
|
|
Type maxPool2dResultType =
|
|
getTypeConverter()->convertType(op->getResult(0).getType());
|
|
Type indicesResultType =
|
|
getTypeConverter()->convertType(op->getResult(1).getType());
|
|
Value outMaxpool2d =
|
|
rewriter.create<tensor::CastOp>(loc, maxPool2dResultType, maxPool2d);
|
|
Value outIndices =
|
|
rewriter.create<tensor::CastOp>(loc, indicesResultType, indicesResult);
|
|
|
|
rewriter.replaceOp(op, {outMaxpool2d, outIndices});
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename OpTy, typename PoolingOpTy, int Dim>
|
|
class ConvertAtenAvgPoolOp : public OpConversionPattern<OpTy> {
|
|
public:
|
|
using OpConversionPattern<OpTy>::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(OpTy op, typename OpTy::Adaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = this->getTypeConverter();
|
|
Value self = adaptor.getSelf();
|
|
|
|
Type inputElementType =
|
|
self.getType().cast<RankedTensorType>().getElementType();
|
|
Type resultType = typeConverter->convertType(op.getType());
|
|
Type resultElementType =
|
|
resultType.cast<RankedTensorType>().getElementType();
|
|
|
|
bool ceilMode;
|
|
SmallVector<Value, Dim> kernelSizeIntValues;
|
|
SmallVector<int64_t, Dim> strideInts, paddingInts, dilationInts(Dim, 1);
|
|
if (failed(checkAndGetPoolingParameters<OpTy>(op, rewriter, typeConverter,
|
|
ceilMode, kernelSizeIntValues,
|
|
strideInts, paddingInts)))
|
|
return rewriter.notifyMatchFailure(op, "invalid pooling parameters");
|
|
|
|
// TODO: Add support for count_include_pad equal to `False`.
|
|
bool countIncludePad;
|
|
if (!matchPattern(op.getCountIncludePad(),
|
|
m_TorchConstantBool(&countIncludePad)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "count_include_pad must be a constant");
|
|
if (!countIncludePad) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: count_include_pad is expected to be true");
|
|
}
|
|
|
|
// `sumPool` contains the result of sumpool operation over the input.
|
|
Value sumPool, paddedInput;
|
|
SmallVector<Value, Dim + 2> outTensorShape;
|
|
if (failed(createPoolingOp<PoolingOpTy>(
|
|
op, rewriter, self, /*supportNonFPInput=*/true, ceilMode,
|
|
/*dimensionality=*/Dim, kernelSizeIntValues, strideInts,
|
|
paddingInts, dilationInts, rewriter.getZeroAttr(inputElementType),
|
|
outTensorShape, paddedInput, sumPool)))
|
|
return rewriter.notifyMatchFailure(op, "unable to compute sumpool");
|
|
Value divisor;
|
|
if constexpr (std::is_same<OpTy, AtenAvgPool2dOp>()) {
|
|
Value kHtimeskW = rewriter.create<arith::MulIOp>(
|
|
loc, kernelSizeIntValues[0], kernelSizeIntValues[1]);
|
|
divisor =
|
|
op.getDivisorOverride().getType().template isa<Torch::NoneType>()
|
|
? kHtimeskW
|
|
: adaptor.getDivisorOverride();
|
|
} else {
|
|
divisor = kernelSizeIntValues[0];
|
|
}
|
|
divisor = convertScalarToDtype(rewriter, loc, divisor, resultElementType);
|
|
|
|
Value outputTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(outTensorShape), resultElementType);
|
|
SmallVector<AffineMap> indexingMapsAvg(
|
|
2, rewriter.getMultiDimIdentityMap(Dim + 2));
|
|
SmallVector<utils::IteratorType> iteratorTypesAvg(
|
|
Dim + 2, utils::IteratorType::parallel);
|
|
Value avgPool =
|
|
rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc, outputTensor.getType(), sumPool, outputTensor,
|
|
/*indexingMaps=*/indexingMapsAvg,
|
|
/*iteratorTypes=*/iteratorTypesAvg,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value avg;
|
|
if (resultElementType.isa<mlir::IntegerType>())
|
|
avg = b.create<arith::DivSIOp>(loc, args[0], divisor);
|
|
else if (resultElementType.isa<mlir::FloatType>())
|
|
avg = b.create<arith::DivFOp>(loc, args[0], divisor);
|
|
b.create<linalg::YieldOp>(loc, avg);
|
|
})
|
|
.getResult(0);
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, avgPool);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/*
|
|
This section is for lowering adaptive pooling ops, which cannot generally be
|
|
decomposed into typical pooling ops. Given an input tensor of rank (N,C,Hin) and
|
|
an output spatial size Hout, an element of the output tensor at position (n, c,
|
|
h) is computed as follows.
|
|
1. compute st(h) = (h*Hin)//Hout
|
|
2. compute en(h) = 1 + ((h+1)*Hin - 1)//Hout
|
|
3. apply the operation (max or avg) over input[n, c, st(h):en(h)]
|
|
This is problematic for linalg ops for a few reasons:
|
|
1. The access to the input tensor is not constantly strided
|
|
2. The size of the window itself is not contant: en(h) - st(h) can vary with
|
|
h! Although it is a bit like using a hammer to paint, our workaround is to use
|
|
tensor.extract to access the elements of the input tensor inside our linalg
|
|
generic op's payload.
|
|
|
|
Current TODO's:
|
|
1. gather most of the boilerplate out of this op and make it into an
|
|
adaptive pooling helper function.
|
|
2. figure out what to do with the conflicting decompositions in
|
|
DecomposeComplexOps.cpp
|
|
3. Implement more efficient passes for when the kernel-size, input spatial
|
|
dims, and output spatial dims are constant.
|
|
*/
|
|
|
|
namespace {
|
|
class ConvertAtenAdaptiveAvgPool1dOp
|
|
: public OpConversionPattern<AtenAdaptiveAvgPool1dOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenAdaptiveAvgPool1dOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
Location loc = op->getLoc();
|
|
const TypeConverter *typeConverter = getTypeConverter();
|
|
|
|
// get rank of input (same as rank of output)
|
|
int64_t rank =
|
|
adaptor.getSelf().getType().cast<RankedTensorType>().getRank();
|
|
// input operand should be NCH (i.e. rank 3)
|
|
if (rank != 3) {
|
|
return rewriter.notifyMatchFailure(op, "only supports input type NCH");
|
|
}
|
|
|
|
// input tensor and output shape
|
|
Value input = adaptor.getSelf();
|
|
Value outputShape = op.getOutputSize();
|
|
SmallVector<Value> outShapeVector;
|
|
getListConstructElements(outputShape, outShapeVector);
|
|
outShapeVector =
|
|
getTypeConvertedValues(rewriter, loc, typeConverter, outShapeVector);
|
|
Value hIn = getDimOp(rewriter, loc, input, 2);
|
|
Value hOut = outShapeVector[0];
|
|
Value hOutIndex = castIntToIndex(rewriter, loc, hOut);
|
|
RankedTensorType inputType = input.getType().cast<RankedTensorType>();
|
|
RankedTensorType outputType =
|
|
typeConverter->convertType(op.getResult().getType())
|
|
.cast<RankedTensorType>();
|
|
|
|
// get elementType of input tensor
|
|
Type elementType = inputType.getElementType();
|
|
|
|
// make an iteration space of size kMax = 1 + ceildiv (hIn - 1) , hOut
|
|
Type boolType = rewriter.getI1Type();
|
|
Value kIter;
|
|
Value constantOne =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
|
|
Value hInPlusOne = rewriter.create<arith::SubIOp>(loc, hIn, constantOne);
|
|
Value kMaxMinusOne =
|
|
rewriter.create<arith::CeilDivSIOp>(loc, hInPlusOne, hOutIndex);
|
|
Value kMax = rewriter.create<arith::AddIOp>(loc, constantOne, kMaxMinusOne);
|
|
kIter = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(ValueRange({kMax})), boolType);
|
|
|
|
// need to buffer input, else there will possibly be an out of bounds access
|
|
// later buffVal = 0 for avg pooling and -inf for max pooling
|
|
Value buffVal = rewriter.create<arith::ConstantOp>(
|
|
loc, elementType, rewriter.getFloatAttr(elementType, 0));
|
|
SmallVector<int64_t> lowPadding = {0, 0, 0};
|
|
SmallVector<int64_t> highPadding = {0, 0, 1};
|
|
Value buffInput = torch_to_linalg::getPaddedTensor(
|
|
op, rewriter, input, lowPadding, highPadding, buffVal);
|
|
|
|
// make a list of outputSizes
|
|
SmallVector<Value> outputSizes;
|
|
for (unsigned i = 0; i < rank - 1; i++) {
|
|
outputSizes.push_back(getDimOp(rewriter, loc, input, i));
|
|
}
|
|
outputSizes.push_back(hOutIndex);
|
|
|
|
// initialize a kernel size tensor (only for avg pooling)
|
|
Value kSizeTensor = rewriter.create<tensor::EmptyOp>(
|
|
loc, getAsOpFoldResult(ValueRange({hOutIndex})), elementType);
|
|
|
|
// initialize an output tensor
|
|
Value initOutput =
|
|
createInitTensor(rewriter, loc, outputSizes, elementType, buffVal);
|
|
|
|
// setup indexing maps and iterator types for linalg generic op
|
|
// for kIter (d0,d1,d2,d3) -> (d3)
|
|
// for output (d0,d1,d2,d3) -> (d0,d1,d2)
|
|
// for kSizeTensor (d0,d1,d2,d3) -> (d2)
|
|
SmallVector<AffineExpr> kIterExprs, outputExprs, kSizeTensorExprs;
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
outputExprs.push_back(rewriter.getAffineDimExpr(i));
|
|
}
|
|
kSizeTensorExprs.push_back(rewriter.getAffineDimExpr(2));
|
|
kIterExprs.push_back(rewriter.getAffineDimExpr(3));
|
|
SmallVector<AffineMap> indexingMaps = AffineMap::inferFromExprList(
|
|
{kIterExprs, outputExprs, kSizeTensorExprs});
|
|
SmallVector<utils::IteratorType> iteratorTypes(
|
|
3, utils::IteratorType::parallel);
|
|
iteratorTypes.push_back(utils::IteratorType::reduction);
|
|
|
|
Value indexOne = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
auto sumPool = rewriter.create<linalg::GenericOp>(
|
|
loc, /*resultTensorTypes=*/
|
|
TypeRange({initOutput.getType(), kSizeTensor.getType()}),
|
|
/*inputs=*/ValueRange({kIter}),
|
|
/*outputs=*/ValueRange({initOutput, kSizeTensor}),
|
|
/*indexingMaps=*/indexingMaps,
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value res = args[1];
|
|
Value ind0 = b.create<linalg::IndexOp>(loc, 0);
|
|
Value ind1 = b.create<linalg::IndexOp>(loc, 1);
|
|
Value ind2 = b.create<linalg::IndexOp>(loc, 2);
|
|
Value ind3 = b.create<linalg::IndexOp>(loc, 3);
|
|
// compute start and end indices
|
|
// st = s1( s0(ind2 * Hin) // Hout )
|
|
Value s0 = b.create<arith::MulIOp>(loc, ind2, hIn);
|
|
Value s1 = b.create<arith::FloorDivSIOp>(loc, s0, hOutIndex);
|
|
// en = e4( 1 + e3( e2( e1( e0(ind2 + 1) * hIn ) - 1 ) // hOut ) )
|
|
Value e0 = b.create<arith::AddIOp>(loc, ind2, indexOne);
|
|
Value e1 = b.create<arith::MulIOp>(loc, e0, hIn);
|
|
Value e2 = b.create<arith::SubIOp>(loc, e1, indexOne);
|
|
Value e3 = b.create<arith::FloorDivSIOp>(loc, e2, hOutIndex);
|
|
Value e4 = b.create<arith::AddIOp>(loc, indexOne, e3);
|
|
// get input element @ st + ind3:
|
|
Value wIndex = b.create<arith::AddIOp>(loc, s1, ind3);
|
|
Value inElt = b.create<tensor::ExtractOp>(
|
|
loc, elementType, buffInput, ValueRange({ind0, ind1, wIndex}));
|
|
// check if we extracted at windex < end index
|
|
Value cond =
|
|
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate(6), wIndex, e4);
|
|
// if inElt is in bounds, include it in the computation
|
|
// else, use buffVal = 0 (for max pool use -infinity)
|
|
Value out1 = b.create<arith::SelectOp>(loc, cond, inElt, buffVal);
|
|
// compute Kernel size: we store this to kwTensor
|
|
Value kSize = b.create<arith::SubIOp>(loc, e4, s1);
|
|
Value kSizeInt = castIndexToInt64(b, loc, kSize);
|
|
Value kSizeF = b.create<arith::SIToFPOp>(loc, elementType, kSizeInt);
|
|
// accumulate out2 to res = args[1]
|
|
Value out2 = b.create<arith::AddFOp>(loc, res, out1);
|
|
b.create<linalg::YieldOp>(loc, ValueRange({out2, kSizeF}));
|
|
});
|
|
|
|
// make a linalg generic to divide each element by the corresponding
|
|
// Kernel Width. This step is only necessary for avg pooling.
|
|
SmallVector<AffineMap> indexingMaps1 =
|
|
AffineMap::inferFromExprList({kSizeTensorExprs, outputExprs});
|
|
SmallVector<utils::IteratorType> iteratorTypes1(
|
|
3, utils::IteratorType::parallel);
|
|
auto output = rewriter.create<linalg::GenericOp>(
|
|
loc, /*resultTensorTypes=*/initOutput.getType(),
|
|
/*inputs=*/sumPool.getResultTensors()[1],
|
|
/*outputs=*/sumPool.getResultTensors()[0],
|
|
/*indexingMaps=*/indexingMaps1,
|
|
/*iteratorTypes=*/iteratorTypes1,
|
|
[&](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value q = b.create<arith::DivFOp>(loc, args[1], args[0]);
|
|
b.create<linalg::YieldOp>(loc, q);
|
|
});
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outputType,
|
|
output.getResultTensors());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_linalg::populatePoolingPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target) {
|
|
MLIRContext *context = patterns.getContext();
|
|
target.addIllegalOp<AtenMaxPool2dOp>();
|
|
target.addIllegalOp<AtenMaxPool3dOp>();
|
|
patterns.add<ConvertAtenMaxPoolOp<AtenMaxPool2dOp>>(typeConverter, context);
|
|
patterns.add<ConvertAtenMaxPoolOp<AtenMaxPool3dOp>>(typeConverter, context);
|
|
|
|
target.addIllegalOp<AtenMaxPool2dWithIndicesOp>();
|
|
patterns.add<ConvertAtenMaxPool2dWithIndicesOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenAvgPool1dOp, AtenAvgPool2dOp>();
|
|
patterns
|
|
.add<ConvertAtenAvgPoolOp<AtenAvgPool1dOp, linalg::PoolingNcwSumOp, 1>>(
|
|
typeConverter, context);
|
|
patterns
|
|
.add<ConvertAtenAvgPoolOp<AtenAvgPool2dOp, linalg::PoolingNchwSumOp, 2>>(
|
|
typeConverter, context);
|
|
target.addIllegalOp<AtenAdaptiveAvgPool1dOp>();
|
|
patterns.add<ConvertAtenAdaptiveAvgPool1dOp>(typeConverter, context);
|
|
}
|