torch-mlir/frontends/pytorch/e2e_testing/torchscript/main.py

83 lines
2.9 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import argparse
import re
import sys
from torch_mlir.torchscript.e2e_test.framework import run_tests
from torch_mlir.torchscript.e2e_test.reporting import report_results
from torch_mlir.torchscript.e2e_test.registry import GLOBAL_TEST_REGISTRY
# Available test configs.
from torch_mlir.torchscript.e2e_test.configs import (
RefBackendTestConfig, NativeTorchTestConfig, TorchScriptTestConfig
)
# Import tests to register them in the global registry.
# TODO: Use a relative import.
# That requires invoking this file as a "package" though, which makes it
# not possible to just do `python main.py`. Instead, it requires something
# like `python -m tochscript.main` which is annoying because it can only
# be run from a specific directory.
# TODO: Find out best practices for python "main" files.
import basic
import vision_models
import mlp
import quantized_models
def _get_argparse():
parser = argparse.ArgumentParser(description='Run torchscript e2e tests.')
parser.add_argument('--config',
choices=['native_torch', 'torchscript', 'refbackend'],
default='refbackend',
help='''
Meaning of options:
"refbackend": run through npcomp's RefBackend.
"native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration).
"torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly).
''')
parser.add_argument('--filter', default='.*', help='''
Regular expression specifying which tests to include in this run.
''')
parser.add_argument('-v', '--verbose',
default=False,
action='store_true',
help='report test results with additional detail')
return parser
def main():
args = _get_argparse().parse_args()
# Find the selected config.
if args.config == 'refbackend':
config = RefBackendTestConfig()
elif args.config == 'native_torch':
config = NativeTorchTestConfig()
elif args.config == 'torchscript':
config = TorchScriptTestConfig()
# Find the selected tests, and emit a diagnostic if none are found.
tests = [
test for test in GLOBAL_TEST_REGISTRY
if re.match(args.filter, test.unique_name)
]
if len(tests) == 0:
print(
f'ERROR: the provided filter {args.filter!r} does not match any tests'
)
print('The available tests are:')
for test in GLOBAL_TEST_REGISTRY:
print(test.unique_name)
sys.exit(1)
# Run the tests.
results = run_tests(tests, config)
# Report the test results.
report_results(results, args.verbose)
if __name__ == '__main__':
main()