torch-mlir/lib/Dialect/Torch/Transforms/ReduceOpVariants.cpp

136 lines
5.3 KiB
C++

//===- ReduceOpVariants.cpp --------------------------------------*- C++-*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Transforms/DialectConversion.h"
#include "npcomp/Dialect/Numpy/IR/NumpyDialect.h"
#include "npcomp/Dialect/Numpy/IR/NumpyOps.h"
#include "npcomp/Dialect/Torch/IR/TorchOps.h"
#include "npcomp/Dialect/Torch/Transforms/Passes.h"
#include "llvm/ADT/StringExtras.h"
using namespace mlir;
using namespace mlir::NPCOMP;
using namespace mlir::NPCOMP::Torch;
namespace {
// Convert value semantic ops operating on mutable arrays to instead operate on
// immutable tensors.
class ConvertToImmutableTensors : public RewritePattern {
public:
ConvertToImmutableTensors(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!op->hasTrait<Torch::OpTrait::HasValueSemantics>())
return rewriter.notifyMatchFailure(op, "does not have value semantics");
rewriter.updateRootInPlace(op, [&]() {
// Convert all operands.
SmallVector<Value> newOperands;
for (OpOperand &opOperand : op->getOpOperands()) {
auto ndArrayType =
opOperand.get().getType().dyn_cast<Numpy::NdArrayType>();
if (!ndArrayType)
continue;
opOperand.set(rewriter.create<Numpy::CopyToTensorOp>(
op->getLoc(), ndArrayType.toTensorType(), opOperand.get()));
}
// Convert all results.
rewriter.setInsertionPointAfter(op);
for (Value result : op->getResults()) {
auto ndArrayType = result.getType().dyn_cast<Numpy::NdArrayType>();
if (!ndArrayType)
continue;
auto createArray = rewriter.create<Numpy::CreateArrayFromTensorOp>(
op->getLoc(), result.getType(), result);
result.replaceAllUsesExcept(createArray, createArray);
result.setType(ndArrayType.toTensorType());
}
});
return success();
}
};
} // namespace
namespace {
// Reduce the "trailing underscore inplace variant" to the value semantic
// variant + an overwrite of the original "self" argument.
class ReduceTrailingUnderscoreInplaceVariant : public RewritePattern {
public:
ReduceTrailingUnderscoreInplaceVariant(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
if (!op->hasTrait<Torch::OpTrait::IsTrailingUnderscoreInplaceVariant>())
return rewriter.notifyMatchFailure(op, "is not trailing_ variant");
SmallVector<StringRef> fragments;
llvm::SplitString(op->getName().getStringRef(), fragments, ".");
assert(fragments.size() >= 3 && fragments[2].endswith("_") &&
"IsTrailingUnderscoreInplaceVariant incorrectly applied");
fragments[2] = fragments[2].drop_back();
std::string noUnderscoreName = llvm::join(fragments, ".");
OperationState state(op->getLoc(), noUnderscoreName);
state.addTypes(op->getResultTypes());
state.addOperands(op->getOperands());
state.addAttributes(op->getAttrDictionary().getValue());
// Note: No successors or regions. Torch JIT operators don't have any.
assert(op->getNumRegions() == 0 && op->getNumSuccessors() == 0 &&
"Torch JIT operators shouldn't have regions or successors");
Operation *newOp = rewriter.createOperation(state);
auto tensor = rewriter.create<Numpy::CopyToTensorOp>(
op->getLoc(),
newOp->getResult(0).getType().cast<Numpy::NdArrayType>().toTensorType(),
newOp->getResult(0));
rewriter.create<Numpy::OverwriteArrayOp>(op->getLoc(), tensor,
op->getOperand(0));
rewriter.replaceOp(op, op->getOperand(0));
return success();
}
};
} // namespace
namespace {
class ReduceOpVariantsPass : public ReduceOpVariantsBase<ReduceOpVariantsPass> {
void runOnOperation() override {
MLIRContext *context = &getContext();
RewritePatternSet patterns(context);
patterns.add<ConvertToImmutableTensors>(context);
patterns.add<ReduceTrailingUnderscoreInplaceVariant>(context);
ConversionTarget target(*context);
target.markUnknownOpDynamicallyLegal([](Operation *op) {
if (op->hasTrait<Torch::OpTrait::HasValueSemantics>()) {
auto isNdArray = [](Type t) { return t.isa<Numpy::NdArrayType>(); };
return llvm::none_of(op->getOperandTypes(), isNdArray) &&
llvm::none_of(op->getResultTypes(), isNdArray);
}
if (op->hasTrait<Torch::OpTrait::IsTrailingUnderscoreInplaceVariant>()) {
return false;
}
return true;
});
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns)))) {
return signalPassFailure();
}
}
};
} // namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::NPCOMP::Torch::createReduceOpVariantsPass() {
return std::make_unique<ReduceOpVariantsPass>();
}