torch-mlir/examples/torchscript_stablehlo_backe...

25 lines
813 B
Python

import torch
import torch_mlir
from transformers import BertForMaskedLM
# Wrap the bert model to avoid multiple returns problem
class BertTinyWrapper(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.bert = BertForMaskedLM.from_pretrained("prajjwal1/bert-tiny", return_dict=False)
def forward(self, data):
return self.bert(data)[0]
model = BertTinyWrapper()
model.eval()
data = torch.randint(30522, (2, 128))
out_stablehlo_mlir_path = "./bert_tiny_stablehlo.mlir"
module = torch_mlir.compile(model, data, output_type=torch_mlir.OutputType.STABLEHLO, use_tracing=True)
with open(out_stablehlo_mlir_path, "w", encoding="utf-8") as outf:
outf.write(str(module))
print(f"StableHLO IR of tiny bert successfully written into {out_stablehlo_mlir_path}")