mirror of https://github.com/llvm/torch-mlir
1177 lines
45 KiB
C++
1177 lines
45 KiB
C++
//===- mlir_edsc.cpp - MLIR EDSC bindings ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <cstddef>
|
|
#include <unordered_map>
|
|
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/pytypes.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "mlir-c/Core.h"
|
|
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
|
|
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
|
|
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
|
|
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
|
|
#include "mlir/EDSC/Builders.h"
|
|
#include "mlir/EDSC/Intrinsics.h"
|
|
#include "mlir/IR/AffineExpr.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Attributes.h"
|
|
#include "mlir/IR/Function.h"
|
|
#include "mlir/IR/Module.h"
|
|
#include "mlir/IR/Types.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Pass/PassManager.h"
|
|
#include "mlir/Target/LLVMIR.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
namespace py = pybind11;
|
|
using mlir::edsc::intrinsics::AffineIndexedValue;
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::edsc;
|
|
|
|
namespace mlir {
|
|
namespace edsc {
|
|
|
|
struct CustomValueBuilder {
|
|
CustomValueBuilder(StringRef name, ArrayRef<Value> operands,
|
|
ArrayRef<Type> resultTypes,
|
|
ArrayRef<NamedAttribute> attributes = {}) {
|
|
OperationState state(ScopedContext::getLocation(), name);
|
|
SmallVector<Value, 4> ops(operands.begin(), operands.end());
|
|
state.addOperands(ops);
|
|
state.addTypes(resultTypes);
|
|
for (const auto &attr : attributes)
|
|
state.addAttribute(attr.first, attr.second);
|
|
Operation *op = ScopedContext::getBuilder().createOperation(state);
|
|
if (op->getNumResults() != 1)
|
|
llvm_unreachable("unsupported operation, use an OperationHandle instead");
|
|
value = op->getResult(0);
|
|
}
|
|
operator Value() { return value; }
|
|
Value value;
|
|
};
|
|
|
|
struct PythonAttribute;
|
|
struct PythonAttributedType;
|
|
struct PythonBindable;
|
|
struct PythonExpr;
|
|
struct PythonFunctionContext;
|
|
struct PythonStmt;
|
|
struct PythonBlock;
|
|
struct PythonAffineExpr;
|
|
struct PythonAffineMap;
|
|
|
|
struct PythonType {
|
|
PythonType() : type{nullptr} {}
|
|
PythonType(mlir_type_t t) : type{t} {}
|
|
|
|
operator mlir_type_t() const { return type; }
|
|
|
|
PythonAttributedType attachAttributeDict(
|
|
const std::unordered_map<std::string, PythonAttribute> &attrs) const;
|
|
|
|
std::string str() {
|
|
mlir::Type f = mlir::Type::getFromOpaquePointer(type);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
f.print(os);
|
|
return res;
|
|
}
|
|
|
|
mlir_type_t type;
|
|
};
|
|
|
|
struct PythonValueHandle {
|
|
PythonValueHandle(const PythonValueHandle &other) = default;
|
|
PythonValueHandle(const mlir::Value &other) : value(other) {}
|
|
PythonValueHandle(mlir::edsc::CustomValueBuilder vb) : value(vb) {}
|
|
template <typename Op>
|
|
PythonValueHandle(mlir::edsc::ValueBuilder<Op> vb) : value(vb) {}
|
|
operator mlir::Value() const { return value; }
|
|
operator mlir::Value &() { return value; }
|
|
|
|
std::string str() const {
|
|
return std::to_string(
|
|
reinterpret_cast<intptr_t>(value.getAsOpaquePointer()));
|
|
}
|
|
|
|
PythonValueHandle call(const std::vector<PythonValueHandle> &args) {
|
|
std::vector<Value> argValues;
|
|
argValues.reserve(args.size());
|
|
for (auto arg : args) argValues.push_back(arg.value);
|
|
return mlir::edsc::ValueBuilder<CallIndirectOp>(value, argValues);
|
|
}
|
|
|
|
PythonType type() const {
|
|
return PythonType(value.getType().getAsOpaquePointer());
|
|
}
|
|
|
|
mlir::Value value;
|
|
};
|
|
|
|
struct PythonFunction {
|
|
PythonFunction() : function{nullptr} {}
|
|
PythonFunction(mlir_func_t f) : function{f} {}
|
|
PythonFunction(mlir::FuncOp f)
|
|
: function(const_cast<void *>(f.getAsOpaquePointer())) {}
|
|
operator mlir_func_t() { return function; }
|
|
std::string str() {
|
|
mlir::FuncOp f = mlir::FuncOp::getFromOpaquePointer(function);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
f.print(os);
|
|
return res;
|
|
}
|
|
|
|
// If the function does not yet have an entry block, i.e. if it is a function
|
|
// declaration, add the entry block, transforming the declaration into a
|
|
// definition. Return true if the block was added, false otherwise.
|
|
bool define() {
|
|
auto f = mlir::FuncOp::getFromOpaquePointer(function);
|
|
if (!f.getBlocks().empty()) return false;
|
|
|
|
f.addEntryBlock();
|
|
return true;
|
|
}
|
|
|
|
PythonValueHandle arg(unsigned index) {
|
|
auto f = mlir::FuncOp::getFromOpaquePointer(function);
|
|
assert(index < f.getNumArguments() && "argument index out of bounds");
|
|
return PythonValueHandle(f.getArgument(index));
|
|
}
|
|
|
|
mlir_func_t function;
|
|
};
|
|
|
|
/// Trivial C++ wrappers make use of the EDSC C API.
|
|
struct PythonMLIRModule {
|
|
PythonMLIRModule()
|
|
: mlirContext(),
|
|
module(mlir::ModuleOp::create(mlir::UnknownLoc::get(&mlirContext))),
|
|
symbolTable(*module) {}
|
|
|
|
PythonType makeMemRefType(PythonType elemType, std::vector<int64_t> sizes) {
|
|
return ::makeMemRefType(mlir_context_t{&mlirContext}, elemType,
|
|
int64_list_t{sizes.data(), sizes.size()});
|
|
}
|
|
PythonType makeIndexType() {
|
|
return ::makeIndexType(mlir_context_t{&mlirContext});
|
|
}
|
|
PythonType makeType(const std::string &type) {
|
|
return ::mlirParseType(type.c_str(), mlir_context_t{&mlirContext}, nullptr);
|
|
}
|
|
|
|
// Declare a function with the given name, input types and their attributes,
|
|
// output types, and function attributes, but do not define it.
|
|
PythonFunction declareFunction(const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes);
|
|
|
|
// Declare a function with the given name, input types and their attributes,
|
|
// output types, and function attributes.
|
|
PythonFunction makeFunction(const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes) {
|
|
auto declaration =
|
|
declareFunction(name, inputs, outputTypes, funcAttributes);
|
|
declaration.define();
|
|
return declaration;
|
|
}
|
|
|
|
// Create a custom op given its name and arguments.
|
|
PythonExpr op(const std::string &name, PythonType type,
|
|
const py::list &arguments, const py::list &successors,
|
|
py::kwargs attributes);
|
|
|
|
// Creates an integer attribute.
|
|
PythonAttribute integerAttr(PythonType type, int64_t value);
|
|
|
|
// Creates a boolean attribute.
|
|
PythonAttribute boolAttr(bool value);
|
|
|
|
// Creates a float attribute.
|
|
PythonAttribute floatAttr(float value);
|
|
|
|
// Creates a string atrribute.
|
|
PythonAttribute stringAttr(const std::string &value);
|
|
|
|
// Creates an Array attribute.
|
|
PythonAttribute arrayAttr(const std::vector<PythonAttribute> &values);
|
|
|
|
// Creates an AffineMap attribute.
|
|
PythonAttribute affineMapAttr(PythonAffineMap value);
|
|
|
|
// Creates a dictionary attribute.
|
|
PythonAttribute dictionaryAttr(
|
|
const std::unordered_map<std::string, PythonAttribute> &attrs);
|
|
|
|
// Creates an affine constant expression.
|
|
PythonAffineExpr affineConstantExpr(int64_t value);
|
|
|
|
// Creates an affine symbol expression.
|
|
PythonAffineExpr affineSymbolExpr(unsigned position);
|
|
|
|
// Creates an affine dimension expression.
|
|
PythonAffineExpr affineDimExpr(unsigned position);
|
|
|
|
// Creates a single constant result affine map.
|
|
PythonAffineMap affineConstantMap(int64_t value);
|
|
|
|
// Creates an affine map.
|
|
PythonAffineMap affineMap(unsigned dimCount, unsigned symbolCount,
|
|
const std::vector<PythonAffineExpr> &results);
|
|
|
|
std::string getIR() {
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
module->print(os);
|
|
return res;
|
|
}
|
|
|
|
PythonFunction getNamedFunction(const std::string &name) {
|
|
return symbolTable.lookup<FuncOp>(name);
|
|
}
|
|
|
|
PythonFunctionContext makeNewFunctionContext(
|
|
const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputs, const py::kwargs &attributes);
|
|
|
|
PythonFunctionContext makeFunctionContext(
|
|
PythonFunction f);
|
|
|
|
private:
|
|
mlir::MLIRContext mlirContext;
|
|
// One single module in a python-exposed MLIRContext for now.
|
|
mlir::OwningModuleRef module;
|
|
mlir::SymbolTable symbolTable;
|
|
};
|
|
|
|
struct PythonFunctionContext {
|
|
PythonFunctionContext(PythonFunction f) : function(f) {}
|
|
PythonFunctionContext(PythonMLIRModule &module, const std::string &name,
|
|
const py::list &inputs,
|
|
const std::vector<PythonType> &outputs,
|
|
const py::kwargs &attributes) {
|
|
auto function = module.declareFunction(name, inputs, outputs, attributes);
|
|
function.define();
|
|
}
|
|
|
|
PythonFunction enter() {
|
|
assert(function.function && "function is not set up");
|
|
auto mlirFunc = mlir::FuncOp::getFromOpaquePointer(function.function);
|
|
contextBuilder.emplace(mlirFunc.getBody());
|
|
context = new mlir::edsc::ScopedContext(*contextBuilder, mlirFunc.getLoc());
|
|
return function;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
delete context;
|
|
context = nullptr;
|
|
contextBuilder.reset();
|
|
}
|
|
|
|
PythonFunction function;
|
|
mlir::edsc::ScopedContext *context;
|
|
llvm::Optional<OpBuilder> contextBuilder;
|
|
};
|
|
|
|
PythonFunctionContext PythonMLIRModule::makeNewFunctionContext(
|
|
const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputs, const py::kwargs &attributes) {
|
|
auto func = declareFunction(name, inputs, outputs, attributes);
|
|
func.define();
|
|
return PythonFunctionContext(func);
|
|
}
|
|
|
|
PythonFunctionContext PythonMLIRModule::makeFunctionContext(
|
|
PythonFunction f) {
|
|
return PythonFunctionContext(f);
|
|
}
|
|
|
|
struct PythonBlockHandle {
|
|
PythonBlockHandle() : value(nullptr) {}
|
|
PythonBlockHandle(const PythonBlockHandle &other) = default;
|
|
PythonBlockHandle(const mlir::edsc::BlockHandle &other) : value(other) {}
|
|
operator mlir::edsc::BlockHandle() const { return value; }
|
|
|
|
PythonType type(int index) { return types[index].getAsOpaquePointer(); }
|
|
PythonValueHandle arg(int index) { return arguments[index]; }
|
|
|
|
std::string str() {
|
|
std::string s;
|
|
llvm::raw_string_ostream os(s);
|
|
value.getBlock()->print(os);
|
|
return os.str();
|
|
}
|
|
|
|
mlir::edsc::BlockHandle value;
|
|
std::vector<mlir::Type> types;
|
|
std::vector<mlir::Value> arguments;
|
|
};
|
|
|
|
struct PythonOperationHandle {
|
|
PythonOperationHandle() : value(nullptr) {}
|
|
PythonOperationHandle(const PythonOperationHandle &other) = default;
|
|
PythonOperationHandle(const mlir::edsc::OperationHandle &other)
|
|
: value(other) {}
|
|
operator OperationHandle() const { return value; }
|
|
operator OperationHandle &() { return value; }
|
|
PythonValueHandle getResult(int index) const {
|
|
return value.getOperation()->getResult(index);
|
|
}
|
|
|
|
std::string str() const {
|
|
std::string s;
|
|
llvm::raw_string_ostream os(s);
|
|
value.getOperation()->print(os);
|
|
return os.str();
|
|
}
|
|
|
|
PythonOperationHandle call(const std::vector<PythonValueHandle> &args) {
|
|
std::vector<Value> argValues;
|
|
argValues.reserve(args.size());
|
|
for (auto arg : args) argValues.push_back(arg.value);
|
|
return OperationHandle::create<CallIndirectOp>(argValues[0], argValues);
|
|
}
|
|
|
|
mlir::edsc::OperationHandle value;
|
|
};
|
|
|
|
struct PythonLoopContext {
|
|
PythonLoopContext(PythonValueHandle lb, PythonValueHandle ub, int64_t step)
|
|
: lb(lb), ub(ub), step(step) {}
|
|
PythonLoopContext(const PythonLoopContext &) = delete;
|
|
PythonLoopContext(PythonLoopContext &&) = default;
|
|
PythonLoopContext &operator=(const PythonLoopContext &) = delete;
|
|
PythonLoopContext &operator=(PythonLoopContext &&) = default;
|
|
~PythonLoopContext() { assert(!builder && "did not exit from the context"); }
|
|
|
|
PythonValueHandle enter() {
|
|
mlir::Value iv;
|
|
builder = new AffineLoopNestBuilder(&iv, lb.value, ub.value, step);
|
|
return iv;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
PythonValueHandle lb, ub;
|
|
int64_t step;
|
|
AffineLoopNestBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonLoopNestContext {
|
|
PythonLoopNestContext(const std::vector<PythonValueHandle> &lbs,
|
|
const std::vector<PythonValueHandle> &ubs,
|
|
const std::vector<int64_t> steps)
|
|
: lbs(lbs), ubs(ubs), steps(steps) {
|
|
assert(lbs.size() == ubs.size() && lbs.size() == steps.size() &&
|
|
"expected the same number of lower, upper bounds, and steps");
|
|
}
|
|
PythonLoopNestContext(const PythonLoopNestContext &) = delete;
|
|
PythonLoopNestContext(PythonLoopNestContext &&) = default;
|
|
PythonLoopNestContext &operator=(const PythonLoopNestContext &) = delete;
|
|
PythonLoopNestContext &operator=(PythonLoopNestContext &&) = default;
|
|
~PythonLoopNestContext() {
|
|
assert(!builder && "did not exit from the context");
|
|
}
|
|
|
|
std::vector<PythonValueHandle> enter() {
|
|
if (steps.empty()) return {};
|
|
|
|
std::vector<mlir::Value> handles(steps.size());
|
|
builder = new AffineLoopNestBuilder(
|
|
handles, std::vector<mlir::Value>(lbs.begin(), lbs.end()),
|
|
std::vector<mlir::Value>(ubs.begin(), ubs.end()), steps);
|
|
return std::vector<PythonValueHandle>(handles.begin(), handles.end());
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
std::vector<PythonValueHandle> lbs;
|
|
std::vector<PythonValueHandle> ubs;
|
|
std::vector<int64_t> steps;
|
|
AffineLoopNestBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonBlockAppender {
|
|
PythonBlockAppender(const PythonBlockHandle &handle) : handle(handle) {}
|
|
PythonBlockHandle handle;
|
|
};
|
|
|
|
struct PythonBlockContext {
|
|
public:
|
|
PythonBlockContext() {
|
|
createBlockBuilder();
|
|
clearBuilder();
|
|
}
|
|
PythonBlockContext(const std::vector<PythonType> &argTypes) {
|
|
handle.arguments.reserve(argTypes.size());
|
|
for (const auto &t : argTypes) {
|
|
auto type =
|
|
Type::getFromOpaquePointer(reinterpret_cast<const void *>(t.type));
|
|
handle.types.emplace_back(type);
|
|
handle.arguments.push_back(Value());
|
|
}
|
|
createBlockBuilder();
|
|
clearBuilder();
|
|
}
|
|
PythonBlockContext(const PythonBlockAppender &a) : handle(a.handle) {}
|
|
PythonBlockContext(const PythonBlockContext &) = delete;
|
|
PythonBlockContext(PythonBlockContext &&) = default;
|
|
PythonBlockContext &operator=(const PythonBlockContext &) = delete;
|
|
PythonBlockContext &operator=(PythonBlockContext &&) = default;
|
|
~PythonBlockContext() {
|
|
assert(!builder && "did not exit from the block context");
|
|
}
|
|
|
|
// EDSC maintain an implicit stack of builders (mostly for keeping track of
|
|
// insertion points); every operation gets inserted using the top-of-the-stack
|
|
// builder. Creating a new EDSC Builder automatically puts it on the stack,
|
|
// effectively entering the block for it.
|
|
void createBlockBuilder() {
|
|
if (handle.value.getBlock())
|
|
builder = new BlockBuilder(handle.value, mlir::edsc::Append());
|
|
else
|
|
builder = new BlockBuilder(&handle.value, handle.types, handle.arguments);
|
|
}
|
|
|
|
PythonBlockHandle enter() {
|
|
createBlockBuilder();
|
|
return handle;
|
|
}
|
|
|
|
void exit(py::object, py::object, py::object) { clearBuilder(); }
|
|
|
|
PythonBlockHandle getHandle() { return handle; }
|
|
|
|
// EDSC maintain an implicit stack of builders (mostly for keeping track of
|
|
// insertion points); every operation gets inserted using the top-of-the-stack
|
|
// builder. Calling operator() on a builder pops the builder from the stack,
|
|
// effectively resetting the insertion point to its position before we entered
|
|
// the block.
|
|
void clearBuilder() {
|
|
(*builder)({}); // exit from the builder's scope.
|
|
delete builder;
|
|
builder = nullptr;
|
|
}
|
|
|
|
PythonBlockHandle handle;
|
|
BlockBuilder *builder = nullptr;
|
|
};
|
|
|
|
struct PythonAttribute {
|
|
PythonAttribute() : attr(nullptr) {}
|
|
PythonAttribute(const mlir_attr_t &a) : attr(a) {}
|
|
PythonAttribute(const PythonAttribute &other) = default;
|
|
operator mlir_attr_t() { return attr; }
|
|
|
|
operator Attribute() const { return Attribute::getFromOpaquePointer(attr); }
|
|
|
|
std::string str() const {
|
|
if (!attr) return "##null attr##";
|
|
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
Attribute().print(os);
|
|
return res;
|
|
}
|
|
|
|
mlir_attr_t attr;
|
|
};
|
|
|
|
struct PythonAttributedType {
|
|
PythonAttributedType() : type(nullptr) {}
|
|
PythonAttributedType(mlir_type_t t) : type(t) {}
|
|
PythonAttributedType(
|
|
PythonType t,
|
|
const std::unordered_map<std::string, PythonAttribute> &attributes =
|
|
std::unordered_map<std::string, PythonAttribute>())
|
|
: type(t), attrs(attributes) {}
|
|
|
|
operator mlir_type_t() const { return type.type; }
|
|
operator PythonType() const { return type; }
|
|
|
|
// Return a vector of named attribute descriptors. The vector owns the
|
|
// mlir_named_attr_t objects it contains, but not the names and attributes
|
|
// those objects point to (names and opaque pointers to attributes are owned
|
|
// by `this`).
|
|
std::vector<mlir_named_attr_t> getNamedAttrs() const {
|
|
std::vector<mlir_named_attr_t> result;
|
|
result.reserve(attrs.size());
|
|
for (const auto &namedAttr : attrs)
|
|
result.push_back({namedAttr.first.c_str(), namedAttr.second.attr});
|
|
return result;
|
|
}
|
|
|
|
std::string str() {
|
|
mlir::Type t = mlir::Type::getFromOpaquePointer(type);
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
t.print(os);
|
|
if (attrs.empty()) return os.str();
|
|
|
|
os << '{';
|
|
bool first = true;
|
|
for (const auto &namedAttr : attrs) {
|
|
if (first)
|
|
first = false;
|
|
else
|
|
os << ", ";
|
|
os << namedAttr.first << ": " << namedAttr.second.str();
|
|
}
|
|
os << '}';
|
|
|
|
return os.str();
|
|
}
|
|
|
|
private:
|
|
PythonType type;
|
|
std::unordered_map<std::string, PythonAttribute> attrs;
|
|
};
|
|
|
|
// Wraps mlir::AffineExpr.
|
|
struct PythonAffineExpr {
|
|
PythonAffineExpr() : affine_expr() {}
|
|
PythonAffineExpr(const AffineExpr &a) : affine_expr(a) {}
|
|
PythonAffineExpr(const PythonAffineExpr &other) = default;
|
|
|
|
operator AffineExpr() const { return affine_expr; }
|
|
operator AffineExpr &() { return affine_expr; }
|
|
|
|
AffineExpr get() const { return affine_expr; }
|
|
|
|
std::string str() const {
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
affine_expr.print(os);
|
|
return res;
|
|
}
|
|
|
|
private:
|
|
AffineExpr affine_expr;
|
|
};
|
|
|
|
// Wraps mlir::AffineMap.
|
|
struct PythonAffineMap {
|
|
PythonAffineMap() : affine_map() {}
|
|
PythonAffineMap(const AffineMap &a) : affine_map(a) {}
|
|
PythonAffineMap(const PythonAffineMap &other) = default;
|
|
|
|
operator AffineMap() const { return affine_map; }
|
|
operator AffineMap &() { return affine_map; }
|
|
|
|
std::string str() const {
|
|
std::string res;
|
|
llvm::raw_string_ostream os(res);
|
|
affine_map.print(os);
|
|
return res;
|
|
}
|
|
|
|
private:
|
|
AffineMap affine_map;
|
|
};
|
|
|
|
struct PythonIndexedValue {
|
|
explicit PythonIndexedValue(const AffineIndexedValue &other)
|
|
: indexed(other) {}
|
|
PythonIndexedValue(PythonValueHandle handle) : indexed(handle.value) {}
|
|
PythonIndexedValue(const PythonIndexedValue &other) = default;
|
|
|
|
// Create a new indexed value with the same base as this one but with indices
|
|
// provided as arguments.
|
|
PythonIndexedValue index(const std::vector<PythonValueHandle> &indices) {
|
|
std::vector<mlir::Value> handles(indices.begin(), indices.end());
|
|
return PythonIndexedValue(AffineIndexedValue(indexed(handles)));
|
|
}
|
|
|
|
void store(const std::vector<PythonValueHandle> &indices,
|
|
PythonValueHandle value) {
|
|
// Uses the overloaded `operator=` to emit a store.
|
|
index(indices).indexed = value.value;
|
|
}
|
|
|
|
PythonValueHandle load(const std::vector<PythonValueHandle> &indices) {
|
|
// Uses the overloaded cast to `mlir::Value` to emit a load.
|
|
return static_cast<mlir::Value>(index(indices).indexed);
|
|
}
|
|
|
|
AffineIndexedValue indexed;
|
|
};
|
|
|
|
template <typename ListTy, typename PythonTy, typename Ty>
|
|
ListTy makeCList(SmallVectorImpl<Ty> &owning, const py::list &list) {
|
|
for (auto &inp : list) {
|
|
owning.push_back(Ty{inp.cast<PythonTy>()});
|
|
}
|
|
return ListTy{owning.data(), owning.size()};
|
|
}
|
|
|
|
PythonFunction PythonMLIRModule::declareFunction(
|
|
const std::string &name, const py::list &inputs,
|
|
const std::vector<PythonType> &outputTypes,
|
|
const py::kwargs &funcAttributes) {
|
|
std::vector<PythonAttributedType> attributedInputs;
|
|
attributedInputs.reserve(inputs.size());
|
|
for (const auto &in : inputs) {
|
|
std::string className = py::str(in.get_type());
|
|
if (className.find(".Type'") != std::string::npos)
|
|
attributedInputs.emplace_back(in.cast<PythonType>());
|
|
else
|
|
attributedInputs.push_back(in.cast<PythonAttributedType>());
|
|
}
|
|
|
|
// Create the function type.
|
|
std::vector<mlir_type_t> ins(attributedInputs.begin(),
|
|
attributedInputs.end());
|
|
std::vector<mlir_type_t> outs(outputTypes.begin(), outputTypes.end());
|
|
auto funcType = ::makeFunctionType(
|
|
mlir_context_t{&mlirContext}, mlir_type_list_t{ins.data(), ins.size()},
|
|
mlir_type_list_t{outs.data(), outs.size()});
|
|
|
|
// Build the list of function attributes.
|
|
std::vector<mlir::NamedAttribute> attrs;
|
|
attrs.reserve(funcAttributes.size());
|
|
for (const auto &named : funcAttributes)
|
|
attrs.emplace_back(
|
|
Identifier::get(std::string(py::str(named.first)), &mlirContext),
|
|
mlir::Attribute::getFromOpaquePointer(reinterpret_cast<const void *>(
|
|
named.second.cast<PythonAttribute>().attr)));
|
|
|
|
// Build the list of lists of function argument attributes.
|
|
std::vector<mlir::NamedAttributeList> inputAttrs;
|
|
inputAttrs.reserve(attributedInputs.size());
|
|
for (const auto &in : attributedInputs) {
|
|
std::vector<mlir::NamedAttribute> inAttrs;
|
|
for (const auto &named : in.getNamedAttrs())
|
|
inAttrs.emplace_back(Identifier::get(named.name, &mlirContext),
|
|
mlir::Attribute::getFromOpaquePointer(
|
|
reinterpret_cast<const void *>(named.value)));
|
|
inputAttrs.emplace_back(inAttrs);
|
|
}
|
|
|
|
// Create the function itself.
|
|
auto func = mlir::FuncOp::create(
|
|
UnknownLoc::get(&mlirContext), name,
|
|
mlir::Type::getFromOpaquePointer(funcType).cast<FunctionType>(), attrs,
|
|
inputAttrs);
|
|
symbolTable.insert(func);
|
|
return func;
|
|
}
|
|
|
|
PythonAttributedType PythonType::attachAttributeDict(
|
|
const std::unordered_map<std::string, PythonAttribute> &attrs) const {
|
|
return PythonAttributedType(*this, attrs);
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::integerAttr(PythonType type, int64_t value) {
|
|
return PythonAttribute(::makeIntegerAttr(type, value));
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::boolAttr(bool value) {
|
|
return PythonAttribute(::makeBoolAttr(&mlirContext, value));
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::floatAttr(float value) {
|
|
return PythonAttribute(::makeFloatAttr(&mlirContext, value));
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::stringAttr(const std::string &value) {
|
|
return PythonAttribute(::makeStringAttr(&mlirContext, value.c_str()));
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::arrayAttr(
|
|
const std::vector<PythonAttribute> &values) {
|
|
std::vector<mlir::Attribute> mlir_attributes(values.begin(), values.end());
|
|
auto array_attr = ArrayAttr::get(
|
|
llvm::ArrayRef<mlir::Attribute>(mlir_attributes), &mlirContext);
|
|
return PythonAttribute(array_attr.getAsOpaquePointer());
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::affineMapAttr(PythonAffineMap value) {
|
|
return PythonAttribute(AffineMapAttr::get(value).getAsOpaquePointer());
|
|
}
|
|
|
|
PythonAttribute PythonMLIRModule::dictionaryAttr(
|
|
const std::unordered_map<std::string, PythonAttribute> &attribute_map) {
|
|
std::vector<NamedAttribute> attributes;
|
|
attributes.reserve(attribute_map.size());
|
|
for (const auto &pair : attribute_map) {
|
|
attributes.emplace_back(Identifier::get(pair.first, &mlirContext),
|
|
Attribute::getFromOpaquePointer(pair.second.attr));
|
|
}
|
|
auto dictionaryAttribute = DictionaryAttr::get(attributes, &mlirContext);
|
|
return PythonAttribute(dictionaryAttribute.getAsOpaquePointer());
|
|
}
|
|
|
|
PythonAffineExpr PythonMLIRModule::affineConstantExpr(int64_t value) {
|
|
return PythonAffineExpr(getAffineConstantExpr(value, &mlirContext));
|
|
}
|
|
|
|
PythonAffineExpr PythonMLIRModule::affineSymbolExpr(unsigned position) {
|
|
return PythonAffineExpr(getAffineSymbolExpr(position, &mlirContext));
|
|
}
|
|
|
|
PythonAffineExpr PythonMLIRModule::affineDimExpr(unsigned position) {
|
|
return PythonAffineExpr(getAffineDimExpr(position, &mlirContext));
|
|
}
|
|
|
|
PythonAffineMap PythonMLIRModule::affineConstantMap(int64_t value) {
|
|
return PythonAffineMap(AffineMap::getConstantMap(value, &mlirContext));
|
|
}
|
|
|
|
PythonAffineMap PythonMLIRModule::affineMap(
|
|
unsigned dimCount, unsigned SymbolCount,
|
|
const std::vector<PythonAffineExpr> &results) {
|
|
std::vector<AffineExpr> mlir_results(results.begin(), results.end());
|
|
return PythonAffineMap(
|
|
AffineMap::get(dimCount, SymbolCount,
|
|
llvm::ArrayRef<AffineExpr>(mlir_results), &mlirContext));
|
|
}
|
|
|
|
void defineMlirEdscModule(py::module m) {
|
|
m.doc() =
|
|
"Python bindings for MLIR Embedded Domain-Specific Components (EDSCs)";
|
|
m.def("version", []() { return "EDSC Python extensions v1.0"; });
|
|
|
|
py::class_<PythonLoopContext>(
|
|
m, "LoopContext", "A context for building the body of a 'for' loop")
|
|
.def(py::init<PythonValueHandle, PythonValueHandle, int64_t>())
|
|
.def("__enter__", &PythonLoopContext::enter)
|
|
.def("__exit__", &PythonLoopContext::exit);
|
|
|
|
py::class_<PythonLoopNestContext>(m, "LoopNestContext",
|
|
"A context for building the body of a the "
|
|
"innermost loop in a nest of 'for' loops")
|
|
.def(py::init<const std::vector<PythonValueHandle> &,
|
|
const std::vector<PythonValueHandle> &,
|
|
const std::vector<int64_t> &>())
|
|
.def("__enter__", &PythonLoopNestContext::enter)
|
|
.def("__exit__", &PythonLoopNestContext::exit);
|
|
|
|
m.def("constant_index", [](int64_t val) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<ConstantIndexOp>(val);
|
|
});
|
|
m.def("constant_int", [](int64_t val, int width) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<ConstantIntOp>(val, width);
|
|
});
|
|
m.def("constant_float", [](double val, PythonType type) -> PythonValueHandle {
|
|
FloatType floatType =
|
|
Type::getFromOpaquePointer(type.type).cast<FloatType>();
|
|
assert(floatType);
|
|
auto value = APFloat(val);
|
|
bool lostPrecision;
|
|
value.convert(floatType.getFloatSemantics(), APFloat::rmNearestTiesToEven,
|
|
&lostPrecision);
|
|
return mlir::edsc::ValueBuilder<ConstantFloatOp>(value, floatType);
|
|
});
|
|
m.def("constant_function", [](PythonFunction func) -> PythonValueHandle {
|
|
auto function = FuncOp::getFromOpaquePointer(func.function);
|
|
auto attr = SymbolRefAttr::get(function.getName(), function.getContext());
|
|
return mlir::edsc::ValueBuilder<ConstantOp>(function.getType(), attr);
|
|
});
|
|
m.def("appendTo", [](const PythonBlockHandle &handle) {
|
|
return PythonBlockAppender(handle);
|
|
});
|
|
m.def(
|
|
"ret",
|
|
[](const std::vector<PythonValueHandle> &args) {
|
|
std::vector<mlir::Value> values(args.begin(), args.end());
|
|
(intrinsics::std_ret(ArrayRef<mlir::Value>{values})); // vexing parse
|
|
return PythonValueHandle(mlir::Value());
|
|
},
|
|
py::arg("args") = std::vector<PythonValueHandle>());
|
|
m.def(
|
|
"br",
|
|
[](const PythonBlockHandle &dest,
|
|
const std::vector<PythonValueHandle> &args) {
|
|
std::vector<mlir::Value> values(args.begin(), args.end());
|
|
intrinsics::std_br(dest, values);
|
|
return PythonValueHandle(mlir::Value());
|
|
},
|
|
py::arg("dest"), py::arg("args") = std::vector<PythonValueHandle>());
|
|
m.def(
|
|
"cond_br",
|
|
[](PythonValueHandle condition, const PythonBlockHandle &trueDest,
|
|
const std::vector<PythonValueHandle> &trueArgs,
|
|
const PythonBlockHandle &falseDest,
|
|
const std::vector<PythonValueHandle> &falseArgs) -> PythonValueHandle {
|
|
std::vector<mlir::Value> trueArguments(trueArgs.begin(),
|
|
trueArgs.end());
|
|
std::vector<mlir::Value> falseArguments(falseArgs.begin(),
|
|
falseArgs.end());
|
|
intrinsics::std_cond_br(condition, trueDest, trueArguments, falseDest,
|
|
falseArguments);
|
|
return PythonValueHandle(mlir::Value());
|
|
});
|
|
m.def("index_cast",
|
|
[](PythonValueHandle element, PythonType type) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<IndexCastOp>(
|
|
element.value, Type::getFromOpaquePointer(type.type));
|
|
});
|
|
m.def("select",
|
|
[](PythonValueHandle condition, PythonValueHandle trueValue,
|
|
PythonValueHandle falseValue) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<SelectOp>(
|
|
condition.value, trueValue.value, falseValue.value);
|
|
});
|
|
m.def("op",
|
|
[](const std::string &name,
|
|
const std::vector<PythonValueHandle> &operands,
|
|
const std::vector<PythonType> &resultTypes,
|
|
const py::kwargs &attributes) -> PythonValueHandle {
|
|
std::vector<mlir::Value> operandHandles(operands.begin(),
|
|
operands.end());
|
|
std::vector<Type> types;
|
|
types.reserve(resultTypes.size());
|
|
for (auto t : resultTypes)
|
|
types.push_back(Type::getFromOpaquePointer(t.type));
|
|
|
|
std::vector<NamedAttribute> attrs;
|
|
attrs.reserve(attributes.size());
|
|
for (const auto &a : attributes) {
|
|
std::string name = py::str(a.first);
|
|
auto pyAttr = a.second.cast<PythonAttribute>();
|
|
auto cppAttr = Attribute::getFromOpaquePointer(pyAttr.attr);
|
|
auto identifier =
|
|
Identifier::get(name, ScopedContext::getContext());
|
|
attrs.emplace_back(identifier, cppAttr);
|
|
}
|
|
return mlir::edsc::CustomValueBuilder(name, operandHandles, types,
|
|
attrs);
|
|
});
|
|
m.def("multi_result_op",
|
|
[](const std::string &name,
|
|
const std::vector<PythonValueHandle> &operands,
|
|
const std::vector<PythonType> &resultTypes,
|
|
const py::kwargs &attributes) -> PythonOperationHandle {
|
|
std::vector<mlir::Value> operandHandles(operands.begin(),
|
|
operands.end());
|
|
std::vector<Type> types;
|
|
types.reserve(resultTypes.size());
|
|
for (auto t : resultTypes)
|
|
types.push_back(Type::getFromOpaquePointer(t.type));
|
|
|
|
std::vector<NamedAttribute> attrs;
|
|
attrs.reserve(attributes.size());
|
|
for (const auto &a : attributes) {
|
|
std::string name = py::str(a.first);
|
|
auto pyAttr = a.second.cast<PythonAttribute>();
|
|
auto cppAttr = Attribute::getFromOpaquePointer(pyAttr.attr);
|
|
auto identifier =
|
|
Identifier::get(name, ScopedContext::getContext());
|
|
attrs.emplace_back(identifier, cppAttr);
|
|
}
|
|
return OperationHandle::create(name, operandHandles, types, attrs);
|
|
});
|
|
|
|
py::class_<PythonFunction>(m, "Function", "Wrapping class for mlir::FuncOp.")
|
|
.def(py::init<PythonFunction>())
|
|
.def("__str__", &PythonFunction::str)
|
|
.def("define", &PythonFunction::define,
|
|
"Adds a body to the function if it does not already have one. "
|
|
"Returns true if the body was added")
|
|
.def("arg", &PythonFunction::arg,
|
|
"Get the mlir::Value to the indexed argument of the function");
|
|
|
|
py::class_<PythonAttribute>(m, "Attribute",
|
|
"Wrapping class for mlir::Attribute")
|
|
.def(py::init<PythonAttribute>())
|
|
.def("__str__", &PythonAttribute::str);
|
|
|
|
py::class_<PythonType>(m, "Type", "Wrapping class for mlir::Type.")
|
|
.def(py::init<PythonType>())
|
|
.def("__call__", &PythonType::attachAttributeDict,
|
|
"Attach the attributes to these type, making it suitable for "
|
|
"constructing functions with argument attributes")
|
|
.def("__str__", &PythonType::str);
|
|
|
|
py::class_<PythonAttributedType>(
|
|
m, "AttributedType",
|
|
"A class containing a wrapped mlir::Type and a wrapped "
|
|
"mlir::NamedAttributeList that are used together, e.g. in function "
|
|
"argument declaration")
|
|
.def(py::init<PythonAttributedType>())
|
|
.def("__str__", &PythonAttributedType::str);
|
|
|
|
py::class_<PythonMLIRModule>(
|
|
m, "MLIRModule",
|
|
"An MLIRModule is the abstraction that owns the allocations to support "
|
|
"compilation of a single mlir::ModuleOp into an ExecutionEngine backed "
|
|
"by "
|
|
"the LLVM ORC JIT. A typical flow consists in creating an MLIRModule, "
|
|
"adding functions, compiling the module to obtain an ExecutionEngine on "
|
|
"which named functions may be called. For now the only means to retrieve "
|
|
"the ExecutionEngine is by calling `get_engine_address`. This mode of "
|
|
"execution is limited to passing the pointer to C++ where the function "
|
|
"is called. Extending the API to allow calling JIT compiled functions "
|
|
"directly require integration with a tensor library (e.g. numpy). This "
|
|
"is left as the prerogative of libraries and frameworks for now.")
|
|
.def(py::init<>())
|
|
.def("boolAttr", &PythonMLIRModule::boolAttr,
|
|
"Creates an mlir::BoolAttr with the given value")
|
|
.def(
|
|
"integerAttr", &PythonMLIRModule::integerAttr,
|
|
"Creates an mlir::IntegerAttr of the given type with the given value "
|
|
"in the context associated with this MLIR module.")
|
|
.def("floatAttr", &PythonMLIRModule::floatAttr,
|
|
"Creates an mlir::FloatAttr with the given value")
|
|
.def("stringAttr", &PythonMLIRModule::stringAttr,
|
|
"Creates an mlir::StringAttr with the given value")
|
|
.def("arrayAttr", &PythonMLIRModule::arrayAttr,
|
|
"Creates an mlir::ArrayAttr of the given type with the given values "
|
|
"in the context associated with this MLIR module.")
|
|
.def("dictionaryAttr", &PythonMLIRModule::dictionaryAttr,
|
|
"Creates a dictonary attribute with the given map.")
|
|
.def("affineMapAttr", &PythonMLIRModule::affineMapAttr,
|
|
"Creates an mlir::AffineMapAttr of the given type with the given "
|
|
"value in the context associated with this MLIR module.")
|
|
.def("declare_function", &PythonMLIRModule::declareFunction,
|
|
"Declares a new mlir::FuncOp in the current mlir::ModuleOp. The "
|
|
"function arguments can have attributes. The function has no "
|
|
"definition and can be linked to an external library.")
|
|
.def("make_function", &PythonMLIRModule::makeFunction,
|
|
"Defines a new mlir::FuncOp in the current mlir::ModuleOp.")
|
|
.def("new_function_context", &PythonMLIRModule::makeNewFunctionContext,
|
|
"Defines a new mlir::FuncOp in the mlir::ModuleOp and creates the "
|
|
"function context for building the body of the function.")
|
|
.def("function_context", &PythonMLIRModule::makeFunctionContext,
|
|
"Creates a function context for building the body of an existing "
|
|
"function.")
|
|
.def("get_function", &PythonMLIRModule::getNamedFunction,
|
|
"Looks up the function with the given name in the module.")
|
|
.def("make_memref_type", &PythonMLIRModule::makeMemRefType,
|
|
"Returns an mlir::MemRefType of an elemental scalar. -1 is used to "
|
|
"denote symbolic dimensions in the resulting memref shape.")
|
|
.def("make_index_type", &PythonMLIRModule::makeIndexType,
|
|
"Returns an mlir::IndexType")
|
|
.def("make_type", &PythonMLIRModule::makeType,
|
|
"Returns an mlir::Type defined by the IR passed in as the argument.")
|
|
.def("get_ir", &PythonMLIRModule::getIR,
|
|
"Returns a dump of the MLIR representation of the module. This is "
|
|
"used for serde to support out-of-process execution as well as "
|
|
"debugging purposes.")
|
|
.def("affine_constant_expr", &PythonMLIRModule::affineConstantExpr,
|
|
"Returns an affine constant expression.")
|
|
.def("affine_symbol_expr", &PythonMLIRModule::affineSymbolExpr,
|
|
"Returns an affine symbol expression.")
|
|
.def("affine_dim_expr", &PythonMLIRModule::affineDimExpr,
|
|
"Returns an affine dim expression.")
|
|
.def("affine_constant_map", &PythonMLIRModule::affineConstantMap,
|
|
"Returns an affine map with single constant result.")
|
|
.def("affine_map", &PythonMLIRModule::affineMap, "Returns an affine map.",
|
|
py::arg("dimCount"), py::arg("symbolCount"), py::arg("results"))
|
|
.def("__str__", &PythonMLIRModule::getIR,
|
|
"Get the string representation of the module");
|
|
|
|
py::class_<PythonFunctionContext>(
|
|
m, "FunctionContext", "A wrapper around mlir::edsc::ScopedContext")
|
|
.def(py::init<PythonFunction>())
|
|
.def("__enter__", &PythonFunctionContext::enter)
|
|
.def("__exit__", &PythonFunctionContext::exit);
|
|
|
|
{
|
|
using namespace mlir::edsc::op;
|
|
py::class_<PythonValueHandle>(m, "Value", "Wraps mlir::Value")
|
|
.def(py::init<PythonValueHandle>())
|
|
.def("__add__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value + rhs.value; })
|
|
.def("__sub__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value - rhs.value; })
|
|
.def("__mul__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value * rhs.value; })
|
|
.def("__div__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value / rhs.value; })
|
|
.def("__truediv__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value / rhs.value; })
|
|
.def("__floordiv__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return floorDiv(lhs, rhs); })
|
|
.def("__mod__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value % rhs.value; })
|
|
.def("__lt__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<CmpIOp>(CmpIPredicate::slt,
|
|
lhs.value, rhs.value);
|
|
})
|
|
.def("__le__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<CmpIOp>(CmpIPredicate::sle,
|
|
lhs.value, rhs.value);
|
|
})
|
|
.def("__gt__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<CmpIOp>(CmpIPredicate::sgt,
|
|
lhs.value, rhs.value);
|
|
})
|
|
.def("__ge__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<CmpIOp>(CmpIPredicate::sge,
|
|
lhs.value, rhs.value);
|
|
})
|
|
.def("__eq__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<CmpIOp>(CmpIPredicate::eq,
|
|
lhs.value, rhs.value);
|
|
})
|
|
.def("__ne__",
|
|
[](PythonValueHandle lhs,
|
|
PythonValueHandle rhs) -> PythonValueHandle {
|
|
return mlir::edsc::ValueBuilder<CmpIOp>(CmpIPredicate::ne,
|
|
lhs.value, rhs.value);
|
|
})
|
|
.def("__invert__",
|
|
[](PythonValueHandle handle) -> PythonValueHandle {
|
|
return negate(handle.value);
|
|
})
|
|
.def("__and__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value && rhs.value; })
|
|
.def("__or__",
|
|
[](PythonValueHandle lhs, PythonValueHandle rhs)
|
|
-> PythonValueHandle { return lhs.value || rhs.value; })
|
|
.def("__call__", &PythonValueHandle::call)
|
|
.def("type", &PythonValueHandle::type);
|
|
}
|
|
|
|
py::class_<PythonOperationHandle>(
|
|
m, "OperationHandle", "A wrapper around mlir::edsc::OperationHandle")
|
|
.def(py::init<PythonOperationHandle>())
|
|
.def("__call__", &PythonOperationHandle::call)
|
|
.def("result", &PythonOperationHandle::getResult);
|
|
|
|
py::class_<PythonBlockAppender>(
|
|
m, "BlockAppender",
|
|
"A dummy class signaling BlockContext to append IR to the given "
|
|
"block "
|
|
"instead of creating a new block")
|
|
.def(py::init<const PythonBlockHandle &>());
|
|
py::class_<PythonBlockHandle>(m, "BlockHandle",
|
|
"A wrapper around mlir::edsc::BlockHandle")
|
|
.def(py::init<PythonBlockHandle>())
|
|
.def("arg", &PythonBlockHandle::arg);
|
|
|
|
py::class_<PythonBlockContext>(m, "BlockContext",
|
|
"A wrapper around mlir::edsc::BlockBuilder")
|
|
.def(py::init<>())
|
|
.def(py::init<const std::vector<PythonType> &>())
|
|
.def(py::init<const PythonBlockAppender &>())
|
|
.def("__enter__", &PythonBlockContext::enter)
|
|
.def("__exit__", &PythonBlockContext::exit)
|
|
.def("handle", &PythonBlockContext::getHandle);
|
|
|
|
py::class_<PythonIndexedValue>(m, "IndexedValue",
|
|
"A wrapper around mlir::edsc::IndexedValue")
|
|
.def(py::init<PythonValueHandle>())
|
|
.def("load", &PythonIndexedValue::load)
|
|
.def("store", &PythonIndexedValue::store);
|
|
|
|
py::class_<PythonAffineExpr>(m, "AffineExpr",
|
|
"A wrapper around mlir::AffineExpr")
|
|
.def(py::init<PythonAffineExpr>())
|
|
.def("__add__",
|
|
[](PythonAffineExpr lhs, int64_t rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() + rhs);
|
|
})
|
|
.def("__add__",
|
|
[](PythonAffineExpr lhs, PythonAffineExpr rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() + rhs.get());
|
|
})
|
|
.def("__neg__",
|
|
[](PythonAffineExpr lhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(-lhs.get());
|
|
})
|
|
.def("__sub__",
|
|
[](PythonAffineExpr lhs, int64_t rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() - rhs);
|
|
})
|
|
.def("__sub__",
|
|
[](PythonAffineExpr lhs, PythonAffineExpr rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() - rhs.get());
|
|
})
|
|
.def("__mul__",
|
|
[](PythonAffineExpr lhs, int64_t rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() * rhs);
|
|
})
|
|
.def("__mul__",
|
|
[](PythonAffineExpr lhs, PythonAffineExpr rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() * rhs.get());
|
|
})
|
|
.def("__floordiv__",
|
|
[](PythonAffineExpr lhs, uint64_t rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get().floorDiv(rhs));
|
|
})
|
|
.def("__floordiv__",
|
|
[](PythonAffineExpr lhs, PythonAffineExpr rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get().floorDiv(rhs.get()));
|
|
})
|
|
.def("ceildiv",
|
|
[](PythonAffineExpr lhs, uint64_t rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get().ceilDiv(rhs));
|
|
})
|
|
.def("ceildiv",
|
|
[](PythonAffineExpr lhs, PythonAffineExpr rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get().ceilDiv(rhs.get()));
|
|
})
|
|
.def("__mod__",
|
|
[](PythonAffineExpr lhs, uint64_t rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() % rhs);
|
|
})
|
|
.def("__mod__",
|
|
[](PythonAffineExpr lhs, PythonAffineExpr rhs) -> PythonAffineExpr {
|
|
return PythonAffineExpr(lhs.get() % rhs.get());
|
|
})
|
|
.def("compose",
|
|
[](PythonAffineExpr self, PythonAffineMap map) -> PythonAffineExpr {
|
|
return PythonAffineExpr(self.get().compose(map));
|
|
})
|
|
.def(
|
|
"get_constant_value",
|
|
[](PythonAffineExpr self) -> py::object {
|
|
auto const_expr = self.get().dyn_cast<AffineConstantExpr>();
|
|
if (const_expr) return py::cast(const_expr.getValue());
|
|
return py::none();
|
|
},
|
|
"Returns the constant value for the affine expression if any, or "
|
|
"returns None.")
|
|
.def("__str__", &PythonAffineExpr::str);
|
|
|
|
py::class_<PythonAffineMap>(m, "AffineMap",
|
|
"A wrapper around mlir::AffineMap")
|
|
.def(py::init<PythonAffineMap>())
|
|
.def("__str__", &PythonAffineMap::str);
|
|
}
|
|
|
|
} // namespace edsc
|
|
} // namespace mlir
|