mirror of https://github.com/llvm/torch-mlir
58 lines
1.8 KiB
Python
58 lines
1.8 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from torch_mlir_e2e_test.torchscript.framework import TestUtils
|
|
from torch_mlir_e2e_test.torchscript.registry import register_test_case
|
|
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
|
|
|
|
# ==============================================================================
|
|
|
|
# Multi-layer perceptron (MLP) models.
|
|
|
|
class Mlp1LayerModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# Reset seed to make model deterministic.
|
|
torch.manual_seed(0)
|
|
self.fc0 = nn.Linear(3, 5)
|
|
self.tanh0 = nn.Tanh()
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, x):
|
|
return self.tanh0(self.fc0(x))
|
|
|
|
@register_test_case(module_factory=lambda: Mlp1LayerModule())
|
|
def Mlp1LayerModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(5, 3))
|
|
|
|
class Mlp2LayerModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# Reset seed to make model deterministic.
|
|
torch.manual_seed(0)
|
|
N_HIDDEN = 5
|
|
self.fc0 = nn.Linear(3, N_HIDDEN)
|
|
self.tanh0 = nn.Tanh()
|
|
self.fc1 = nn.Linear(N_HIDDEN, 2)
|
|
self.tanh1 = nn.Tanh()
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, x):
|
|
x = self.tanh0(self.fc0(x))
|
|
x = self.tanh1(self.fc1(x))
|
|
return x
|
|
|
|
@register_test_case(module_factory=lambda: Mlp2LayerModule())
|
|
def Mlp2LayerModule_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(5, 3))
|