mirror of https://github.com/llvm/torch-mlir
32 lines
1.1 KiB
Python
32 lines
1.1 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
import torch
|
|
import torchvision.models as models
|
|
|
|
from torch_mlir_e2e_test.torchscript.framework import TestUtils
|
|
from torch_mlir_e2e_test.torchscript.registry import register_test_case
|
|
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
|
|
|
|
# ==============================================================================
|
|
|
|
class ResNet18Module(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
# Reset seed to make model deterministic.
|
|
torch.manual_seed(0)
|
|
self.resnet = models.resnet18()
|
|
self.train(False)
|
|
@export
|
|
@annotate_args([
|
|
None,
|
|
([-1, 3, -1, -1], torch.float32, True),
|
|
])
|
|
def forward(self, img):
|
|
return self.resnet.forward(img)
|
|
|
|
@register_test_case(module_factory=lambda: ResNet18Module())
|
|
def ResNet18Module_basic(module, tu: TestUtils):
|
|
module.forward(tu.rand(1, 3, 224, 224))
|