torch-mlir/test/Dialect/Torch/ops.mlir

135 lines
6.0 KiB
MLIR

// RUN: npcomp-opt %s | npcomp-opt | FileCheck %s
// CHECK-LABEL: func @torch.operator(
func @torch.operator(%arg0: !torch.tensor, %arg1: !torch.tensor) -> !torch.tensor {
// CHECK: torch.operator "ns.unqual.overload"(%arg0, %arg1) : (!torch.tensor, !torch.tensor) -> !torch.tensor
%0 = torch.operator "ns.unqual.overload"(%arg0, %arg1) : (!torch.tensor, !torch.tensor) -> !torch.tensor
return %0 : !torch.tensor
}
func @torch.linear_params.create(%arg0: !torch.tensor, %arg1: !torch.tensor) -> (!torch.LinearParams, !torch.LinearParams) {
%with_bias = torch.linear_params.create %arg0, %arg1 : !torch.tensor, !torch.tensor
%without_bias = torch.linear_params.create %arg0 : !torch.tensor
return %with_bias, %without_bias : !torch.LinearParams, !torch.LinearParams
}
// CHECK-LABEL: func @builtin_tensor_interop(
func @builtin_tensor_interop(%arg0: tensor<*xf32>, %arg1: tensor<3x?xsi8>, %arg2: !torch.vtensor<*,f32>, %arg3: !torch.vtensor<[3,?],si8>) {
// CHECK: torch.from_builtin_tensor %arg0 : tensor<*xf32> -> !torch.vtensor<*,f32>
%0 = torch.from_builtin_tensor %arg0 : tensor<*xf32> -> !torch.vtensor<*,f32>
// CHECK: torch.from_builtin_tensor %arg1 : tensor<3x?xsi8> -> !torch.vtensor<[3,?],si8>
%1 = torch.from_builtin_tensor %arg1 : tensor<3x?xsi8> -> !torch.vtensor<[3,?],si8>
// CHECK: torch.to_builtin_tensor %arg2 : !torch.vtensor<*,f32> -> tensor<*xf32>
%2 = torch.to_builtin_tensor %arg2 : !torch.vtensor<*,f32> -> tensor<*xf32>
// CHECK: torch.to_builtin_tensor %arg3 : !torch.vtensor<[3,?],si8> -> tensor<3x?xsi8>
%3 = torch.to_builtin_tensor %arg3 : !torch.vtensor<[3,?],si8> -> tensor<3x?xsi8>
return
}
// CHECK: @tensor.default() -> !torch.tensor
func private @tensor.default() -> !torch.tensor
// CHECK: @tensor.default_explicit() -> !torch.tensor{{$}}
func private @tensor.default_explicit() -> !torch.tensor<*,unk>
// CHECK: @tensor.value_semantic() -> !torch.vtensor{{$}}
func private @tensor.value_semantic() -> !torch.vtensor<*,unk>
// CHECK: @tensor.dtype() -> !torch.tensor<*,si32>
func private @tensor.dtype() -> !torch.tensor<*,si32>
// CHECK: @tensor.ranked() -> !torch.tensor<[?,?,?],unk>
func private @tensor.ranked() -> !torch.tensor<[?,?,?],unk>
// CHECK: @tensor.some_sizes_known() -> !torch.tensor<[?,2,?,4],unk>
func private @tensor.some_sizes_known() -> !torch.tensor<[?,2,?,4],unk>
// CHECK: @tensor.fully_determined() -> !torch.vtensor<[1,2,3,4],f32>
func private @tensor.fully_determined() -> !torch.vtensor<[1,2,3,4],f32>
// CHECK: @tuple.empty() -> !torch.tuple<>
func private @tuple.empty() -> !torch.tuple<>
// CHECK: @tuple.one_element() -> !torch.tuple<!torch.tensor>
func private @tuple.one_element() -> !torch.tuple<!torch.tensor>
// CHECK: @tuple.two_elements() -> !torch.tuple<!torch.tensor, !torch.tensor>
func private @tuple.two_elements() -> !torch.tuple<!torch.tensor, !torch.tensor>
// CHECK-LABEL: func @torch.tensor.literal() {
func @torch.tensor.literal() {
// CHECK: torch.tensor.literal(dense<4.200000e+01> : tensor<3x2xf32>) : !torch.tensor
%0 = torch.tensor.literal(dense<42.0> : tensor<3x2xf32>) : !torch.tensor
// CHECK: torch.tensor.literal(dense<4.200000e+01> : tensor<3x2xf32>) : !torch.tensor<[3,2],f32>
%1 = torch.tensor.literal(dense<42.0> : tensor<3x2xf32>) : !torch.tensor<[3,2],f32>
return
}
// CHECK-LABEL: func @torch.vtensor.literal() {
func @torch.vtensor.literal() {
// CHECK: torch.vtensor.literal(dense<4.200000e+01> : tensor<3x2xf32>) : !torch.vtensor<[3,2],f32>
%0 = torch.vtensor.literal(dense<42.0> : tensor<3x2xf32>) : !torch.vtensor<[3,2],f32>
return
}
func @derefine(%arg0: !torch.tensor) -> !torch.optional<!torch.tensor> {
%0 = torch.derefine %arg0 : !torch.tensor to !torch.optional<!torch.tensor>
return %0 : !torch.optional<!torch.tensor>
}
func @torch.prim.If(%arg0: !torch.bool, %arg1: !torch.int) -> !torch.int {
%0 = torch.prim.If %arg0 -> (!torch.int) {
%1 = torch.aten.add.int %arg1, %arg1 : !torch.int, !torch.int -> !torch.int
torch.prim.If.yield %1 : !torch.int
} else {
%1 = torch.aten.mul.int %arg1, %arg1 : !torch.int, !torch.int -> !torch.int
torch.prim.If.yield %1 : !torch.int
}
return %0 : !torch.int
}
// CHECK: %true = torch.constant.bool true
%true = torch.constant.bool true
// CHECK: %false = torch.constant.bool false
%false = torch.constant.bool false
// CHECK: %int3 = torch.constant.int 3
%int3 = torch.constant.int 3
// CHECK: %int-3 = torch.constant.int -3
%int-3 = torch.constant.int -3
// CHECK: %float1.000000e00 = torch.constant.float 1.000000e+00
%float1.000000e00 = torch.constant.float 1.000000e+00
// CHECK: %float-1.000000e00 = torch.constant.float -1.000000e+00
%float-1.000000e00 = torch.constant.float -1.000000e+00
// CHECK: %float1.000000e-10 = torch.constant.float 1.000000e-10
%float1.000000e-10 = torch.constant.float 1.000000e-10
// CHECK: %float1.000000e10 = torch.constant.float 1.000000e+10
%float1.000000e10 = torch.constant.float 1.000000e+10
// CHECK: %float4.250000e01 = torch.constant.float 4.250000e+01
%float4.250000e01 = torch.constant.float 4.250000e+01
%tensor = torch.tensor.literal(dense<1.000000e+00> : tensor<1xf32>) : !torch.tensor
// CHECK: %none = torch.constant.none
%none = torch.constant.none
// CHECK: %str = torch.constant.str "some str"
%str = torch.constant.str "some str"
func private @f(%arg0: !torch.nn.Module<"test">) {
return
}
torch.class_type @empty {}
%submodule = torch.nn_module {} : !torch.nn.Module<"empty">
torch.class_type @test {
torch.attr "b" : !torch.bool
torch.attr "i" : !torch.int
torch.attr "f" : !torch.float
torch.attr "t" : !torch.tensor
torch.attr "submodule" : !torch.nn.Module<"empty">
torch.attr "ob" : !torch.optional<!torch.bool>
torch.attr "s" : !torch.str
torch.method "method", @f
}
torch.nn_module {
torch.slot "b", %true : !torch.bool
torch.slot "i", %int3 : !torch.int
torch.slot "f", %float1.000000e00 : !torch.float
torch.slot "t", %tensor : !torch.tensor
torch.slot "submodule", %submodule : !torch.nn.Module<"empty">
torch.slot "ob", %none : !torch.none
torch.slot "s", %str : !torch.str
} : !torch.nn.Module<"test">