mirror of https://github.com/llvm/torch-mlir
96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
import argparse
|
|
import re
|
|
import sys
|
|
|
|
from torch_mlir.torchscript.e2e_test.framework import run_tests
|
|
from torch_mlir.torchscript.e2e_test.reporting import report_results
|
|
from torch_mlir.torchscript.e2e_test.registry import GLOBAL_TEST_REGISTRY
|
|
|
|
# Available test configs.
|
|
from torch_mlir.torchscript.e2e_test.configs import (
|
|
NpcompBackendTestConfig, NativeTorchTestConfig, TorchScriptTestConfig
|
|
)
|
|
|
|
from npcomp.compiler.pytorch.backend import is_iree_enabled
|
|
IREE_ENABLED = is_iree_enabled()
|
|
if IREE_ENABLED:
|
|
from npcomp.compiler.pytorch.backend.iree import IreeNpcompBackend
|
|
from npcomp.compiler.pytorch.backend.refjit import RefjitNpcompBackend
|
|
|
|
from .xfail_sets import XFAIL_SETS
|
|
|
|
# Import tests to register them in the global registry.
|
|
# Make sure to use `tools/torchscript_e2e_test.sh` wrapper for invoking
|
|
# this script.
|
|
from . import basic
|
|
from . import vision_models
|
|
from . import mlp
|
|
from . import batchnorm
|
|
from . import quantized_models
|
|
from . import elementwise
|
|
|
|
def _get_argparse():
|
|
config_choices = ['native_torch', 'torchscript', 'refbackend']
|
|
if IREE_ENABLED:
|
|
config_choices += ['iree']
|
|
parser = argparse.ArgumentParser(description='Run torchscript e2e tests.')
|
|
parser.add_argument('--config',
|
|
choices=config_choices,
|
|
default='refbackend',
|
|
help=f'''
|
|
Meaning of options:
|
|
"refbackend": run through npcomp's RefBackend.
|
|
"iree"{'' if IREE_ENABLED else '(disabled)'}: run through npcomp's IREE backend.
|
|
"native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration).
|
|
"torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly).
|
|
''')
|
|
parser.add_argument('--filter', default='.*', help='''
|
|
Regular expression specifying which tests to include in this run.
|
|
''')
|
|
parser.add_argument('-v', '--verbose',
|
|
default=False,
|
|
action='store_true',
|
|
help='report test results with additional detail')
|
|
return parser
|
|
|
|
def main():
|
|
args = _get_argparse().parse_args()
|
|
|
|
# Find the selected config.
|
|
if args.config == 'refbackend':
|
|
config = NpcompBackendTestConfig(RefjitNpcompBackend())
|
|
elif args.config == 'iree':
|
|
config = NpcompBackendTestConfig(IreeNpcompBackend())
|
|
elif args.config == 'native_torch':
|
|
config = NativeTorchTestConfig()
|
|
elif args.config == 'torchscript':
|
|
config = TorchScriptTestConfig()
|
|
|
|
# Find the selected tests, and emit a diagnostic if none are found.
|
|
tests = [
|
|
test for test in GLOBAL_TEST_REGISTRY
|
|
if re.match(args.filter, test.unique_name)
|
|
]
|
|
if len(tests) == 0:
|
|
print(
|
|
f'ERROR: the provided filter {args.filter!r} does not match any tests'
|
|
)
|
|
print('The available tests are:')
|
|
for test in GLOBAL_TEST_REGISTRY:
|
|
print(test.unique_name)
|
|
sys.exit(1)
|
|
|
|
# Run the tests.
|
|
results = run_tests(tests, config)
|
|
|
|
# Report the test results.
|
|
failed = report_results(results, XFAIL_SETS[args.config], args.verbose)
|
|
sys.exit(1 if failed else 0)
|
|
|
|
if __name__ == '__main__':
|
|
main()
|