torch-mlir/frontends/pytorch/examples/mul_maximum_e2e.py

38 lines
1.1 KiB
Python

# -*- Python -*-
# This file is licensed under a pytorch-style license
# See frontends/pytorch/LICENSE for license information.
import torch
import torch_mlir
import npcomp
from npcomp.compiler.pytorch.backend import refjit, frontend_lowering
from npcomp.compiler.utils import logging
import test_utils
logging.enable()
lhs = torch.ones((4, 6, 1))
rhs = torch.ones((1, 1, 3)) * 0.6
bias = torch.ones((1, 1, 3)) * 0.2
threshold = torch.tensor((0.75, 0.25, 0.10))
def mul_maximum(lhs, rhs, threshold, bias):
return torch.maximum(lhs * rhs, threshold) + bias
mb = torch_mlir.ModuleBuilder()
with mb.capture_function("mul_maximum", [lhs, rhs, threshold, bias]) as f:
result = mul_maximum(lhs, rhs, threshold, bias)
f.returns([result])
backend = iree.IreeNpcompBackend()
jit_module = backend.load(backend.compile(frontend_lowering.lower_module(mb.module)))
test_utils.compare_outputs(mul_maximum, jit_module.mul_maximum, lhs, rhs,
threshold, bias)
test_utils.compare_outputs(mul_maximum, jit_module.mul_maximum, lhs + 1,
rhs + 2, threshold, bias)