torch-mlir/python/torch_mlir/extras/fx_decomp_util.py

57 lines
2.0 KiB
Python

import torch
from torch._decomp import get_decompositions
# default decompositions pulled from SHARK / torch._decomp
DEFAULT_DECOMPOSITIONS = [
torch.ops.aten.embedding_dense_backward,
torch.ops.aten.native_layer_norm_backward,
torch.ops.aten.slice_backward,
torch.ops.aten.select_backward,
torch.ops.aten.norm.ScalarOpt_dim,
torch.ops.aten.native_group_norm,
torch.ops.aten.upsample_bilinear2d.vec,
torch.ops.aten.split.Tensor,
torch.ops.aten.split_with_sizes,
torch.ops.aten.native_layer_norm,
torch.ops.aten.masked_fill.Tensor,
torch.ops.aten.masked_fill.Scalar,
torch.ops.aten.t,
torch.ops.aten.addmm,
# decompositions that aid us in handling nn.BatchNorm2d
torch.ops.aten._native_batch_norm_legit_functional,
torch.ops.aten._native_batch_norm_legit_no_training,
torch.ops.aten._native_batch_norm_legit,
torch.ops.aten._native_batch_norm_legit.no_stats,
torch.ops.aten.squeeze.dims,
# decompositions for miscellaneous ops that are not handled in torch-mlir but have available decompositions
torch.ops.aten.soft_margin_loss,
torch.ops.aten.im2col,
torch.ops.aten._euclidean_dist,
torch.ops.aten.index_copy,
torch.ops.aten.index_copy_,
torch.ops.aten.grid_sampler_2d,
torch.ops.aten.log_sigmoid_forward,
torch.ops.aten.unsafe_split.Tensor,
torch.ops.aten.binary_cross_entropy,
torch.ops.aten.dot,
torch.ops.aten._adaptive_avg_pool2d,
torch.ops.aten._prelu_kernel,
torch.ops.aten.full,
torch.ops.aten._log_softmax,
torch.ops.aten.nll_loss_forward,
torch.ops.aten.nll_loss_backward,
torch.ops.aten._to_copy,
torch.ops.aten._log_softmax_backward_data,
torch.ops.aten.lift_fresh_copy.default,
torch.ops.aten._unsafe_index.Tensor,
torch.ops.aten.linspace.default,
torch.ops.aten.triu.default,
torch.ops.aten.nan_to_num.default,
torch.ops.aten.unbind,
torch.ops.aten._scaled_dot_product_flash_attention_for_cpu,
]
def get_decomposition_table():
return get_decompositions(DEFAULT_DECOMPOSITIONS)