mirror of https://github.com/llvm/torch-mlir
1120 lines
46 KiB
C++
1120 lines
46 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Conversion/TorchToLinalg/TorchToLinalg.h"
|
|
|
|
#include "../PassDetail.h"
|
|
#include "PopulatePatterns.h"
|
|
#include "Utils.h"
|
|
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "torch-mlir/Conversion/Utils/Utils.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
|
|
#include <numeric>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
namespace {
|
|
class ConvertAtenFlattenUsingIntsOp
|
|
: public OpConversionPattern<AtenFlattenUsingIntsOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenFlattenUsingIntsOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
int64_t startDim;
|
|
if (!matchPattern(op.start_dim(), m_TorchConstantInt(&startDim)))
|
|
return rewriter.notifyMatchFailure(op, "start_dim must be constant");
|
|
int64_t endDim;
|
|
if (!matchPattern(op.end_dim(), m_TorchConstantInt(&endDim)))
|
|
return rewriter.notifyMatchFailure(op, "end_dim must be constant");
|
|
auto type = adaptor.self().getType().cast<RankedTensorType>();
|
|
auto inputRank = type.getRank();
|
|
auto resultType =
|
|
getTypeConverter()->convertType(op.getType()).cast<RankedTensorType>();
|
|
if (startDim < 0)
|
|
startDim += inputRank;
|
|
if (endDim < 0)
|
|
endDim += inputRank;
|
|
|
|
if (inputRank == 0) {
|
|
SmallVector<ReassociationIndices> reassociation;
|
|
if (!(startDim >= -1 && startDim <= 0 && endDim >= -1 && endDim <= 0))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "start_dim and end_dim must be in [-1, 0] when inputRank is 0");
|
|
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
|
|
op, resultType, adaptor.self(), reassociation);
|
|
return success();
|
|
}
|
|
|
|
if (startDim < 0 || startDim >= inputRank || endDim < 0 ||
|
|
endDim >= inputRank || startDim > endDim)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "statically invalid flattening dim range");
|
|
|
|
SmallVector<ReassociationIndices> reassociation(resultType.getRank());
|
|
int j = 0;
|
|
for (auto i : llvm::seq<int64_t>(0, inputRank)) {
|
|
reassociation[j].push_back(i);
|
|
if (i < startDim || i >= endDim)
|
|
j++;
|
|
}
|
|
Value collapsedTensor = rewriter.create<tensor::CollapseShapeOp>(
|
|
op->getLoc(), adaptor.self(), reassociation);
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType,
|
|
collapsedTensor);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// The `ConvertAtenViewOp` conversion pattern converts `aten.View` op to
|
|
/// `linalg.TensorExpandShape` op only when one or multiple static dimensions
|
|
/// are expanded. All the other cases of `aten.View` op need to be handled.
|
|
/// TODO: Handle all the other cases of `aten.View` op.
|
|
class ConvertAtenViewOp : public OpConversionPattern<AtenViewOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenViewOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
Location loc = op.getLoc();
|
|
Value input = adaptor.self();
|
|
auto inputType = input.getType().cast<RankedTensorType>();
|
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
int64_t inputRank = inputType.getRank();
|
|
TypeConverter *typeConverter = getTypeConverter();
|
|
auto resultType =
|
|
typeConverter->convertType(op.getType()).cast<RankedTensorType>();
|
|
int64_t resultRank = resultType.getRank();
|
|
if (resultRank == 0)
|
|
return rewriter.notifyMatchFailure(op,
|
|
"result shape of rank 0 is invalid");
|
|
|
|
// TODO: add support for case inputRank 0 expanded to size 1
|
|
if (inputRank == 0)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: input rank 0 is not supported");
|
|
|
|
bool isCollapse = inputRank > resultRank ? true : false;
|
|
int64_t collapsedRank = isCollapse ? resultRank : inputRank;
|
|
int64_t expandedRank = isCollapse ? inputRank : resultRank;
|
|
|
|
// Extract the desired output size as a list of integers. This list should
|
|
// have been created using the operation `torch.prim.ListConstruct`.
|
|
SmallVector<Value> outputSizeTorchInt;
|
|
if (!getListConstructElements(op.size(), outputSizeTorchInt)) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"unimplemented: the target size is "
|
|
"not constructed from ListConstruct");
|
|
}
|
|
SmallVector<Value> outputSizeInt = getTypeConvertedValues(
|
|
rewriter, loc, typeConverter, outputSizeTorchInt);
|
|
if (resultRank != (int64_t)outputSizeInt.size()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "desired size list length mismatches with the result type rank");
|
|
}
|
|
|
|
SmallVector<Value> inputSize = getTensorSizes(rewriter, loc, input);
|
|
ArrayRef<Value> expandedShapeInt =
|
|
llvm::makeArrayRef(isCollapse ? inputSize : outputSizeInt);
|
|
ArrayRef<Value> collapsedShapeInt =
|
|
llvm::makeArrayRef(isCollapse ? outputSizeInt : inputSize);
|
|
|
|
// Currently, we only handle the expanding or collapsing cases or the
|
|
// identity cases where the rank and shape of the input and result are
|
|
// equal, and the input itself is the result. We do not handle expanding And
|
|
// collapsing happening at the same time or cases where it's neither
|
|
// collapsing nor expanding like view of [2,3] for 3x2 tensor.
|
|
// TODO: For the expanding And collapsing case, we will need to identify
|
|
// which dimensions are collapsing and which are expanding and do it in two
|
|
// steps.
|
|
// TODO: For neither collapsing nor expanding, we could find a intermediate
|
|
// shape to collapse and then expanded to the target shape. Like [2,3] =>
|
|
// [6] => [3, 2].
|
|
if (inputRank == resultRank) {
|
|
for (unsigned i = 0; i < inputRank; i++)
|
|
checkDimEqualHelper(rewriter, loc, inputSize[i], outputSizeInt[i]);
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, input);
|
|
return success();
|
|
}
|
|
|
|
// Iterate through the view op size list to do the following:
|
|
//
|
|
// 1. Combine output size list and input tensor type info to get the most
|
|
// static outputShape.
|
|
//
|
|
// 2. Fill in the reassociation for size list item where the output dim size
|
|
// is got from `torch.aten.size.int(inputTensor, inputDim)`. We naively
|
|
// assume this means the corresponding dimension is not expanded or
|
|
// collapsed. Note this may technically not always be true.
|
|
// TODO: think of a way better way to at least detect when this assumption
|
|
// is violated.
|
|
SmallVector<int64_t> outputShape(resultRank, kUnknownSize);
|
|
SmallVector<ReassociationIndices> reassociation(collapsedRank);
|
|
llvm::Optional<int64_t> inferredDimension;
|
|
for (auto en : llvm::enumerate(outputSizeTorchInt)) {
|
|
int64_t inputDim;
|
|
int64_t size;
|
|
int64_t outputDim = en.index();
|
|
// Match torch.aten.size.int(inputTensor, inputDim) with constant inputDim
|
|
if (matchPattern(en.value(),
|
|
m_TorchTensorSizeInt(op.self(), &inputDim))) {
|
|
auto collapsedDim = isCollapse ? outputDim : inputDim;
|
|
auto expandedDim = isCollapse ? inputDim : outputDim;
|
|
reassociation[collapsedDim].push_back(expandedDim);
|
|
if (!inputType.isDynamicDim(inputDim)) {
|
|
outputShape[outputDim] = inputShape[inputDim];
|
|
continue;
|
|
}
|
|
} else if (matchPattern(en.value(), m_TorchConstantInt(&size))) {
|
|
if (size != -1) {
|
|
outputShape[outputDim] = size;
|
|
continue;
|
|
}
|
|
|
|
if (inferredDimension.hasValue()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "at most one element in size list is allowed to be -1");
|
|
}
|
|
inferredDimension = outputDim;
|
|
}
|
|
}
|
|
|
|
// Use static information of input tensor to determine size of inferred
|
|
// dimension in output shape.
|
|
//
|
|
// If there is an inferred dimension and that is the only dimension
|
|
// in the output shape (i.e. the tensor is getting fully flattened),
|
|
// then we don't need to analyze the static information of the input
|
|
// shape since the reassociation of dimensions only requires rank
|
|
// information.
|
|
if (inferredDimension.hasValue() && outputShape.size() > 1) {
|
|
if (llvm::count(outputShape, kUnknownSize) != 1 ||
|
|
llvm::count(inputShape, kUnknownSize) != 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"unimplemented: an inferred dimension is only supported when there "
|
|
"is enough static shape information to determine its size, or when "
|
|
"the input tensor is being flattened to a single dimension");
|
|
}
|
|
|
|
auto productReduceKnownSizes = [](const ArrayRef<int64_t> sizes) {
|
|
auto knownSizes = llvm::make_filter_range(
|
|
sizes, [](int64_t val) { return val != kUnknownSize; });
|
|
return std::accumulate(knownSizes.begin(), knownSizes.end(), /*init=*/1,
|
|
std::multiplies<int64_t>());
|
|
};
|
|
|
|
int64_t numOfElements = productReduceKnownSizes(inputShape);
|
|
int64_t outputKnownNumOfElements = productReduceKnownSizes(outputShape);
|
|
if (numOfElements % outputKnownNumOfElements != 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "number of elements in input tensor must be divisible by "
|
|
"product of non-inferred dimensions in size list");
|
|
}
|
|
outputShape[*inferredDimension] =
|
|
numOfElements / outputKnownNumOfElements;
|
|
}
|
|
|
|
SmallVector<int64_t> collapsedShape =
|
|
isCollapse ? outputShape : llvm::to_vector(inputShape);
|
|
SmallVector<int64_t> expandedShape =
|
|
isCollapse ? llvm::to_vector(inputShape) : outputShape;
|
|
|
|
// The while loop does the following:
|
|
// 1. Fill in the reassociation indices for dimensions that are expanded.
|
|
// Check the interval dimensions between two unchanged dims in the
|
|
// collapsedShape. If the interval is size 1, associate all the dims
|
|
// in the expandedShape shape until the next unchanged dim. If the interval
|
|
// is larger than size 1, figure out the associations with assumptions that
|
|
// dynamic dimensions are not splitted.
|
|
// 2. Set collapsedShape and expandedShape following the requirements by
|
|
// tensor.expand_shape verification code:
|
|
// a. As long as one or more of the related dimensions in the expanded
|
|
// shape is dynamic the collapsed dimension is dynamic.
|
|
// b. If all of the related dimensions are static, the collapsed
|
|
// dimension must be static. In other words, if a collapsed dimension is
|
|
// dynamic, at least one of the related dimensions need to be dynamic.
|
|
int64_t collapsedDim = 0, expandedDim = 0;
|
|
while (collapsedDim < collapsedRank && expandedDim < expandedRank) {
|
|
// Not empty means the associations has been filled in and the dimension
|
|
// is unchanged.
|
|
if (!reassociation[collapsedDim].empty()) {
|
|
if (expandedDim != reassociation[collapsedDim][0])
|
|
return op.emitOpError("Unsupported: expanded dims are off from the "
|
|
"expected dim got from reassociation");
|
|
collapsedDim++;
|
|
expandedDim++;
|
|
continue;
|
|
}
|
|
|
|
// Collect the dims that are collapsed until hitting the next dim that's
|
|
// unchanged.
|
|
SmallVector<int64_t> collapsedDims;
|
|
while (collapsedDim < collapsedRank &&
|
|
reassociation[collapsedDim].empty()) {
|
|
collapsedDims.push_back(collapsedDim);
|
|
collapsedDim++;
|
|
}
|
|
// the next reassociation is for a dim that's unchanged.
|
|
int64_t expandedDimNext = collapsedDim != collapsedRank
|
|
? reassociation[collapsedDim][0]
|
|
: expandedRank;
|
|
if (collapsedDims.size() == 1) {
|
|
int64_t collapsedDimSize = 1;
|
|
int64_t collapsedDim = collapsedDims[0];
|
|
for (auto i : llvm::seq<int64_t>(expandedDim, expandedDimNext)) {
|
|
reassociation[collapsedDim].push_back(i);
|
|
if (collapsedDimSize == kUnknownSize)
|
|
continue;
|
|
|
|
int64_t expandedDimSize = expandedShape[i];
|
|
if (expandedDimSize == kUnknownSize) {
|
|
collapsedDimSize = kUnknownSize;
|
|
continue;
|
|
}
|
|
collapsedDimSize *= expandedShape[i];
|
|
}
|
|
// To meet both requirements from tensor.expand_shape verification code.
|
|
collapsedShape[collapsedDim] = collapsedDimSize;
|
|
expandedDim = expandedDimNext;
|
|
continue;
|
|
}
|
|
|
|
// collpasedDims are expanded to [expandedDim, expandedDimNext)
|
|
if (expandedDimNext - expandedDim < (int64_t)collapsedDims.size())
|
|
op.emitError("unimplemented: mixed of expanding and collapsing "
|
|
"operations for view");
|
|
for (auto collapsedDim : collapsedDims) {
|
|
if (collapsedShape[collapsedDim] == kUnknownSize) {
|
|
if (expandedDim >= expandedDimNext) {
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"desired size is not compatible with the input tensor size");
|
|
}
|
|
checkDimEqualHelper(rewriter, loc, collapsedShapeInt[collapsedDim],
|
|
expandedShapeInt[expandedDim]);
|
|
// To meet the second requirement from tensor.expand_shape
|
|
// verification code.
|
|
expandedShape[expandedDim] = kUnknownSize;
|
|
reassociation[collapsedDim].push_back(expandedDim++);
|
|
} else {
|
|
int64_t remainingSizeToExpand = collapsedShape[collapsedDim];
|
|
// A do-while loop is used here to handle the cases where the
|
|
// collapsed shape tensor has a dimension of size 1.
|
|
do {
|
|
int64_t expandedDimSize = expandedShape[expandedDim];
|
|
if (expandedDim >= expandedDimNext ||
|
|
expandedShape[expandedDim] == kUnknownSize ||
|
|
remainingSizeToExpand % expandedDimSize != 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "total number of elements mismatch in the expansion");
|
|
}
|
|
reassociation[collapsedDim].push_back(expandedDim++);
|
|
remainingSizeToExpand /= expandedDimSize;
|
|
} while (remainingSizeToExpand != 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (collapsedDim != collapsedRank || expandedDim != expandedRank)
|
|
return rewriter.notifyMatchFailure(op, "view shape is not supported");
|
|
Type adjustedResultType =
|
|
RankedTensorType::get(isCollapse ? collapsedShape : expandedShape,
|
|
resultType.getElementType());
|
|
Type adjustedInputType =
|
|
RankedTensorType::get(isCollapse ? expandedShape : collapsedShape,
|
|
resultType.getElementType());
|
|
Value castedInput =
|
|
rewriter.create<tensor::CastOp>(loc, adjustedInputType, input);
|
|
Value result =
|
|
isCollapse
|
|
? rewriter
|
|
.create<tensor::CollapseShapeOp>(loc, adjustedResultType,
|
|
castedInput, reassociation)
|
|
.result()
|
|
: rewriter
|
|
.create<tensor::ExpandShapeOp>(loc, adjustedResultType,
|
|
castedInput, reassociation)
|
|
.result();
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenSqueezeOp : public OpConversionPattern<AtenSqueezeOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenSqueezeOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
Location loc = op.getLoc();
|
|
Value input = adaptor.self();
|
|
auto inputType = input.getType().cast<RankedTensorType>();
|
|
int64_t inputRank = inputType.getRank();
|
|
TypeConverter *typeConverter = getTypeConverter();
|
|
auto resultType =
|
|
typeConverter->convertType(op.getType()).cast<RankedTensorType>();
|
|
int64_t resultRank = resultType.getRank();
|
|
|
|
if (inputRank == 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "zero input rank should have been handled by the folder");
|
|
}
|
|
|
|
// In case the operand tensor type is statically shaped with all dimensions
|
|
// being unit extent, it will be collapsed to a 0-D tensor.
|
|
if (resultRank == 0) {
|
|
SmallVector<ReassociationIndices> reassociation;
|
|
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
|
|
op, resultType, input, reassociation);
|
|
return success();
|
|
}
|
|
|
|
// All the static size-1 dimensions at the beginning(going from higher to
|
|
// lower dimensions) will be collapsed into the first dynamic or first non
|
|
// size-1 static dimension. All the other static size-1 dimensions will be
|
|
// collapsed into its previous dynamic or non size-1 static dimension.
|
|
SmallVector<ReassociationIndices> reassociation(resultRank);
|
|
bool isSqueezed = false;
|
|
int64_t headOnesCount = 0;
|
|
while (headOnesCount < inputRank &&
|
|
inputType.getDimSize(headOnesCount) == 1) {
|
|
isSqueezed = true;
|
|
reassociation[0].push_back(headOnesCount++);
|
|
}
|
|
|
|
// TODO: Add support for size-1 dynamic dimensions.
|
|
Value one = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(rewriter.getIndexType(), 1));
|
|
int64_t j = -1;
|
|
for (auto i : llvm::seq<int64_t>(headOnesCount, inputRank)) {
|
|
if (inputType.isDynamicDim(i)) {
|
|
// Make sure that size-1 dynamic dimension does not exist.
|
|
Value dimSize = getDimOp(rewriter, loc, input, i);
|
|
Value dimSizeNotOne = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::ne, dimSize, one);
|
|
rewriter.create<cf::AssertOp>(
|
|
loc, dimSizeNotOne,
|
|
rewriter.getStringAttr(
|
|
"unimplemented: size 1 dynamic dimension is not supported"));
|
|
++j;
|
|
} else if (inputType.getDimSize(i) != 1) {
|
|
++j;
|
|
} else {
|
|
// `isSqueezed` checks if the operand tensor type contains at least one
|
|
// unit dimension.
|
|
isSqueezed = true;
|
|
}
|
|
if (j == resultRank)
|
|
break;
|
|
reassociation[j].push_back(i);
|
|
}
|
|
|
|
// Make sure that result type rank is compatible with the squeezed size.
|
|
if (j != resultRank - 1)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expected output size mismatches with the result type rank");
|
|
|
|
if (isSqueezed) {
|
|
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
|
|
op, resultType, input, reassociation);
|
|
|
|
} else {
|
|
// If the operand tensor type does not have any unit dimension,
|
|
// `aten.squeeze` will behave as an identity operation.
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, input);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenSqueezeDimOp : public OpConversionPattern<AtenSqueezeDimOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenSqueezeDimOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
Value input = adaptor.self();
|
|
auto inputType = input.getType().cast<RankedTensorType>();
|
|
int64_t inputRank = inputType.getRank();
|
|
|
|
if (inputRank == 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "zero input rank should have been handled by the folder");
|
|
}
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
|
|
return rewriter.notifyMatchFailure(op, "dim must be constant");
|
|
dim = toPositiveDim(dim, inputRank);
|
|
if (!isValidDim(dim, inputRank))
|
|
return rewriter.notifyMatchFailure(op, "dim is statically invalid");
|
|
|
|
// TODO: Handle the case where the dim(th) dimension is dynamic.
|
|
if (inputType.isDynamicDim(dim)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: dim(th) dimension is not expected to be dynamic");
|
|
}
|
|
|
|
TypeConverter *typeConverter = getTypeConverter();
|
|
auto resultType =
|
|
typeConverter->convertType(op.getType()).cast<RankedTensorType>();
|
|
int64_t resultRank = resultType.getRank();
|
|
|
|
// If the dim(th) dimension of operand tensor type is not statically unit,
|
|
// `aten.squeeze` will behave as an identity operation.
|
|
if (inputType.getDimSize(dim) != 1) {
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, input);
|
|
return success();
|
|
}
|
|
|
|
SmallVector<ReassociationIndices> reassociationMap(resultRank);
|
|
bool alreadyCrossedSqueezedDim = false;
|
|
for (int i = 0; i != resultRank; i++) {
|
|
if (alreadyCrossedSqueezedDim) {
|
|
reassociationMap[i].push_back(i + 1);
|
|
} else {
|
|
reassociationMap[i].push_back(i);
|
|
if (dim != 0 && i != dim - 1)
|
|
continue;
|
|
|
|
alreadyCrossedSqueezedDim = true;
|
|
if (dim == 0)
|
|
reassociationMap[0].push_back(1);
|
|
if (i == dim - 1)
|
|
reassociationMap[i].push_back(dim);
|
|
}
|
|
}
|
|
// Note: In case the operand tensor type is of unit rank and is statically
|
|
// shaped with unit dimension, the `reassociationMap` will be empty and the
|
|
// input will be collapsed to a 0-D tensor.
|
|
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(op, resultType, input,
|
|
reassociationMap);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenUnsqueezeOp : public OpConversionPattern<AtenUnsqueezeOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenUnsqueezeOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
int64_t dim;
|
|
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
|
|
return rewriter.notifyMatchFailure(op, "dim must be constant");
|
|
auto inputRank =
|
|
adaptor.self().getType().cast<RankedTensorType>().getRank();
|
|
if (dim < 0)
|
|
dim += inputRank + 1;
|
|
if (!(0 <= dim && dim <= inputRank))
|
|
return rewriter.notifyMatchFailure(op, "statically invalid");
|
|
|
|
SmallVector<ReassociationIndices> reassociationMap(inputRank);
|
|
// From the perspective of the reassociation map, the situation of
|
|
// unsqueezing before or after the last dimension is symmetrical.
|
|
// Normalize it to the "before" case.
|
|
// The 0 case is special here, since there is no last dimension to insert
|
|
// before -- we simply rely on the loop below iterating 0 times.
|
|
if (dim == inputRank && inputRank != 0)
|
|
dim = inputRank - 1;
|
|
bool alreadyCrossedExpandedDim = false;
|
|
for (int i = 0; i != inputRank; i++) {
|
|
if (alreadyCrossedExpandedDim) {
|
|
reassociationMap[i].push_back(i + 1);
|
|
} else {
|
|
reassociationMap[i].push_back(i);
|
|
if (i == dim) {
|
|
reassociationMap[i].push_back(i + 1);
|
|
alreadyCrossedExpandedDim = true;
|
|
}
|
|
}
|
|
}
|
|
auto resultType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
|
|
op, resultType, adaptor.self(), reassociationMap);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenTransposeIntOp
|
|
: public OpConversionPattern<AtenTransposeIntOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenTransposeIntOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
int64_t dim0;
|
|
if (!matchPattern(op.dim0(), m_TorchConstantInt(&dim0)))
|
|
return rewriter.notifyMatchFailure(op, "dim0 must be constant");
|
|
int64_t dim1;
|
|
if (!matchPattern(op.dim1(), m_TorchConstantInt(&dim1)))
|
|
return rewriter.notifyMatchFailure(op, "dim1 must be constant");
|
|
|
|
auto inVector = adaptor.self();
|
|
auto inType = inVector.getType().cast<RankedTensorType>();
|
|
auto inputRank = inType.getRank();
|
|
auto outType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
auto elementType = inType.getElementType();
|
|
|
|
dim0 = toPositiveDim(dim0, inputRank);
|
|
if (!isValidDim(dim0, inputRank))
|
|
return rewriter.notifyMatchFailure(op, "dim0 out of range");
|
|
dim1 = toPositiveDim(dim1, inputRank);
|
|
if (!isValidDim(dim1, inputRank))
|
|
return rewriter.notifyMatchFailure(op, "dim1 out of range");
|
|
|
|
auto loc = op.getLoc();
|
|
|
|
SmallVector<Value> outputDims;
|
|
for (auto i = 0; i < inputRank; i++)
|
|
outputDims.push_back(getDimOp(rewriter, loc, adaptor.self(), i));
|
|
std::swap(outputDims[dim0], outputDims[dim1]);
|
|
|
|
Value outVector =
|
|
rewriter.create<linalg::InitTensorOp>(loc, outputDims, elementType);
|
|
SmallVector<AffineExpr> idExprs;
|
|
SmallVector<AffineExpr> swapExprs;
|
|
for (auto i = 0; i < inputRank; i++)
|
|
idExprs.push_back(getAffineDimExpr(i, rewriter.getContext()));
|
|
for (auto i = 0; i < inputRank; i++) {
|
|
if (i == dim0)
|
|
swapExprs.push_back(idExprs[dim1]);
|
|
else if (i == dim1)
|
|
swapExprs.push_back(idExprs[dim0]);
|
|
else
|
|
swapExprs.push_back(idExprs[i]);
|
|
}
|
|
|
|
SmallVector<AffineMap> indexingMaps = {
|
|
AffineMap::get(inputRank, 0, idExprs, op.getContext()),
|
|
AffineMap::get(inputRank, 0, swapExprs, op.getContext())};
|
|
SmallVector<StringRef> iteratorTypes(inputRank, "parallel");
|
|
auto transpose = rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc, outVector.getType(), inVector, outVector,
|
|
indexingMaps, iteratorTypes,
|
|
[](OpBuilder &b, Location loc, ValueRange args) {
|
|
b.create<linalg::YieldOp>(loc, args[0]);
|
|
})
|
|
.getResult(0);
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outType, transpose);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenPermuteOp : public OpConversionPattern<AtenPermuteOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenPermuteOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
SmallVector<int64_t> dimensions;
|
|
if (!matchPattern(op.dims(), m_TorchConstantIntList(dimensions)))
|
|
return rewriter.notifyMatchFailure(op, "all dimensions must be constant");
|
|
|
|
Value inVector = adaptor.self();
|
|
auto inType = inVector.getType().cast<RankedTensorType>();
|
|
int64_t inputRank = inType.getRank();
|
|
auto outType = getTypeConverter()
|
|
->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
Type elementType = inType.getElementType();
|
|
|
|
// Check if the dimensions are a valid constants.
|
|
int64_t numDimensions = dimensions.size();
|
|
if (inputRank != numDimensions)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "size of `dims` must be equal to the rank of the input");
|
|
for (unsigned i = 0; i < numDimensions; i++) {
|
|
if (dimensions[i] < 0)
|
|
dimensions[i] = toPositiveDim(dimensions[i], inputRank);
|
|
if (!isValidDim(dimensions[i], inputRank))
|
|
return rewriter.notifyMatchFailure(op, "dimension out of range");
|
|
}
|
|
|
|
Location loc = op.getLoc();
|
|
|
|
SmallVector<Value> outputDims;
|
|
for (unsigned i = 0; i < inputRank; i++)
|
|
outputDims.push_back(getDimOp(rewriter, loc, inVector, dimensions[i]));
|
|
|
|
Value outVector =
|
|
rewriter.create<linalg::InitTensorOp>(loc, outputDims, elementType);
|
|
SmallVector<AffineExpr> idExprs;
|
|
SmallVector<AffineExpr> swapExprs;
|
|
for (unsigned i = 0; i < inputRank; i++)
|
|
idExprs.push_back(getAffineDimExpr(i, rewriter.getContext()));
|
|
for (unsigned i = 0; i < inputRank; i++)
|
|
swapExprs.push_back(idExprs[dimensions[i]]);
|
|
|
|
SmallVector<AffineMap> indexingMaps =
|
|
AffineMap::inferFromExprList({idExprs, swapExprs});
|
|
SmallVector<StringRef> iteratorTypes(inputRank, "parallel");
|
|
auto transpose = rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc, outVector.getType(), inVector, outVector,
|
|
indexingMaps, iteratorTypes,
|
|
[](OpBuilder &b, Location loc, ValueRange args) {
|
|
b.create<linalg::YieldOp>(loc, args[0]);
|
|
})
|
|
.getResult(0);
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, outType, transpose);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenSliceTensorOp : public OpConversionPattern<AtenSliceTensorOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenSliceTensorOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
Location loc = op.getLoc();
|
|
TypeConverter *typeConverter = getTypeConverter();
|
|
|
|
auto input = adaptor.self();
|
|
RankedTensorType inputType = input.getType().cast<RankedTensorType>();
|
|
RankedTensorType resultType =
|
|
typeConverter->convertType(op->getResult(0).getType())
|
|
.cast<RankedTensorType>();
|
|
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
|
|
int64_t dim;
|
|
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim)))
|
|
return op->emitError("unimplemented: dim is not constant");
|
|
|
|
SmallVector<Value> inputShape = getTensorSizes(rewriter, loc, input);
|
|
Value dimSize = inputShape[dim];
|
|
|
|
auto adjustStartOrEnd = [&](Value startOrEndTorchType,
|
|
Value startOrEndBuiltin, Value valueForNone) {
|
|
if (startOrEndTorchType.getType().isa<Torch::NoneType>())
|
|
return valueForNone;
|
|
auto dimSizeAsInt = castIndexToInt64(rewriter, loc, dimSize);
|
|
Value startOrEndToPositive =
|
|
toPositiveDimDynamic(rewriter, loc, startOrEndBuiltin, dimSizeAsInt);
|
|
// startOrEnd < 0 ? 0 : startOrEnd
|
|
Value cst0 = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getZeroAttr(dimSizeAsInt.getType()));
|
|
Value predDimSltZero = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::slt, startOrEndToPositive, cst0);
|
|
Value startOrEndAtLeastZero = rewriter.create<arith::SelectOp>(
|
|
loc, predDimSltZero, cst0, startOrEndToPositive);
|
|
// startOrEnd > dimSizeAsInt ? dimSizeAsInt : startOrEnd
|
|
Value startOrEndSgtDimSize = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sgt, startOrEndAtLeastZero, dimSizeAsInt);
|
|
Value startOrEndBoundedByDimSize = rewriter.create<arith::SelectOp>(
|
|
loc, startOrEndSgtDimSize, dimSizeAsInt, startOrEndAtLeastZero);
|
|
|
|
return castIntToIndex(rewriter, loc, startOrEndBoundedByDimSize);
|
|
};
|
|
|
|
if (op.start().getType().isa<OptionalType>() ||
|
|
op.end().getType().isa<OptionalType>())
|
|
return rewriter.notifyMatchFailure(op, "unimplemented optional type arg");
|
|
Value start = adjustStartOrEnd(op.start(), adaptor.start(), zero);
|
|
Value end = adjustStartOrEnd(op.end(), adaptor.end(), dimSize);
|
|
|
|
// end >= start ? end : start
|
|
Value endSgeStart = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sge, end, start);
|
|
end = rewriter.create<arith::SelectOp>(loc, endSgeStart, end, start);
|
|
|
|
int64_t step;
|
|
if (!matchPattern(op.step(), m_TorchConstantInt(&step))) {
|
|
if (!op.step().getType().isa<Torch::NoneType>())
|
|
return op->emitError("unimplemented: step is not constant");
|
|
step = 1;
|
|
}
|
|
|
|
// Slice logic: resultSize = floordiv(end - start + step - 1, step)
|
|
Value stepIndex = rewriter.create<arith::ConstantIndexOp>(loc, step);
|
|
Value len = rewriter.create<arith::SubIOp>(loc, end, start);
|
|
Value resultSize = rewriter.create<arith::AddIOp>(loc, len, stepIndex);
|
|
resultSize = rewriter.create<arith::SubIOp>(loc, resultSize, one);
|
|
resultSize =
|
|
rewriter.create<arith::FloorDivSIOp>(loc, resultSize, stepIndex);
|
|
|
|
SmallVector<Value> resultShape = getTensorSizes(rewriter, loc, input);
|
|
resultShape[dim] = resultSize;
|
|
|
|
SmallVector<Value> offsets(inputType.getRank(), zero);
|
|
SmallVector<Value> strides(inputType.getRank(), one);
|
|
offsets[dim] = start;
|
|
strides[dim] = rewriter.create<arith::MulIOp>(loc, strides[dim], stepIndex);
|
|
|
|
Value result = rewriter.create<tensor::ExtractSliceOp>(
|
|
loc, input, offsets, resultShape, strides);
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenCatOp : public OpConversionPattern<AtenCatOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenCatOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
Location loc = op.getLoc();
|
|
TypeConverter *typeConverter = getTypeConverter();
|
|
|
|
Value dimValue = op.dim();
|
|
int64_t dim;
|
|
if (!matchPattern(dimValue, m_TorchConstantInt(&dim)))
|
|
return op.emitError("unimplemented: dim is not constant");
|
|
|
|
// Collect all the tensors to be concatenated.
|
|
auto tensorList = op.tensors();
|
|
SmallVector<Value> tensorsTorchType;
|
|
if (!getListConstructElements(tensorList, tensorsTorchType))
|
|
return op.emitError(
|
|
"unimplemented: the tensor list is not from list construct");
|
|
auto tensors =
|
|
getTypeConvertedValues(rewriter, loc, typeConverter, tensorsTorchType);
|
|
|
|
RankedTensorType newResultType =
|
|
typeConverter->convertType(op.getType()).cast<RankedTensorType>();
|
|
int rank = newResultType.getRank();
|
|
SmallVector<Value> offsets, sizes, strides;
|
|
sizes.reserve(rank);
|
|
strides.resize(rank, rewriter.create<arith::ConstantIndexOp>(loc, 1));
|
|
offsets.resize(rank, rewriter.create<arith::ConstantIndexOp>(loc, 0));
|
|
|
|
for (int i = 0; i < rank; ++i)
|
|
sizes.push_back(rewriter.createOrFold<tensor::DimOp>(loc, tensors[0], i));
|
|
|
|
// Calculate the size of the `dim` result dimension by adding the dim size
|
|
// of each tensor together.
|
|
Value resultDimSize = sizes[dim];
|
|
|
|
Value dimIndex = rewriter.createOrFold<arith::ConstantOp>(
|
|
loc, rewriter.getIndexAttr(dim));
|
|
for (auto tensor : makeArrayRef(tensors).drop_front()) {
|
|
auto size = rewriter.createOrFold<tensor::DimOp>(loc, tensor, dimIndex);
|
|
resultDimSize =
|
|
rewriter.createOrFold<arith::AddIOp>(loc, resultDimSize, size);
|
|
}
|
|
sizes[dim] = resultDimSize;
|
|
|
|
auto toOpFoldResult = [](Value v) -> OpFoldResult {
|
|
auto op = v.getDefiningOp<arith::ConstantIndexOp>();
|
|
if (!op)
|
|
return v;
|
|
return op.getValue();
|
|
};
|
|
|
|
Value result = rewriter.create<linalg::InitTensorOp>(
|
|
loc, sizes, newResultType.getElementType());
|
|
for (auto tensor : tensors) {
|
|
SmallVector<Value> sizes = getTensorSizes(rewriter, loc, tensor);
|
|
result = rewriter.createOrFold<tensor::InsertSliceOp>(
|
|
loc, tensor, result,
|
|
llvm::to_vector(llvm::map_range(offsets, toOpFoldResult)),
|
|
llvm::to_vector(llvm::map_range(sizes, toOpFoldResult)),
|
|
llvm::to_vector(llvm::map_range(strides, toOpFoldResult)));
|
|
offsets[dim] =
|
|
rewriter.createOrFold<arith::AddIOp>(loc, offsets[dim], sizes[dim]);
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Broadcasts input tensor based on the broadcastToShape.
|
|
static LogicalResult broadcastToGivenShape(Operation *op,
|
|
ConversionPatternRewriter &rewriter,
|
|
Value input,
|
|
SmallVector<Value> broadcastToShape,
|
|
Value &result) {
|
|
RankedTensorType inputType = input.getType().cast<RankedTensorType>();
|
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
if (broadcastToShape.size() < inputShape.size()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "invalid shape: broadcastToShape size must not be smaller than the "
|
|
"size of the input shape");
|
|
}
|
|
|
|
Type elementType = inputType.getElementType();
|
|
Location loc = op->getLoc();
|
|
MLIRContext *context = op->getContext();
|
|
SmallVector<Value> outShape;
|
|
|
|
// Create affine map and shapes for tensor initialization.
|
|
SmallVector<AffineExpr> outExpr;
|
|
Value zero =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getI64IntegerAttr(0));
|
|
size_t diff = broadcastToShape.size() - inputShape.size();
|
|
for (size_t i = 0; i < broadcastToShape.size(); i++) {
|
|
Value shapeValue = broadcastToShape[i];
|
|
size_t j = i - diff;
|
|
if (i < diff) {
|
|
Value isValid = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::sge, shapeValue, zero);
|
|
rewriter.create<cf::AssertOp>(
|
|
loc, isValid,
|
|
rewriter.getStringAttr(
|
|
"negative values not allowed in new dimensions"));
|
|
outShape.push_back(castIntToIndex(rewriter, loc, shapeValue));
|
|
continue;
|
|
}
|
|
if (inputShape[j] == 1) {
|
|
// Broadcast singleton dimension
|
|
Value one =
|
|
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
|
|
Value isNegative = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::slt, shapeValue, zero);
|
|
Value select = rewriter.create<arith::SelectOp>(
|
|
loc, isNegative, one, castIntToIndex(rewriter, loc, shapeValue));
|
|
outShape.push_back(select);
|
|
outExpr.push_back(mlir::getAffineConstantExpr(0, context));
|
|
continue;
|
|
}
|
|
// Non-broadcast case
|
|
Value dim = getDimOp(rewriter, loc, input, j);
|
|
Value isNegative = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::slt, shapeValue, zero);
|
|
Value isEqual = rewriter.create<arith::CmpIOp>(
|
|
loc, arith::CmpIPredicate::eq, castIndexToInt64(rewriter, loc, dim),
|
|
shapeValue);
|
|
Value isValid = rewriter.create<arith::OrIOp>(loc, isNegative, isEqual);
|
|
rewriter.create<cf::AssertOp>(
|
|
loc, isValid,
|
|
rewriter.getStringAttr(
|
|
"only broadcasting singleton dimensions supported"));
|
|
outShape.push_back(dim);
|
|
outExpr.push_back(mlir::getAffineDimExpr(i, context));
|
|
}
|
|
|
|
Value outTensor =
|
|
rewriter.create<linalg::InitTensorOp>(loc, outShape, elementType);
|
|
|
|
SmallVector<AffineMap> indexingMaps = {
|
|
AffineMap::get(broadcastToShape.size(), 0, outExpr, context),
|
|
rewriter.getMultiDimIdentityMap(broadcastToShape.size())};
|
|
SmallVector<StringRef> iteratorTypes(broadcastToShape.size(), "parallel");
|
|
result = rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc, outTensor.getType(), input, outTensor, indexingMaps,
|
|
iteratorTypes,
|
|
[](OpBuilder &b, Location loc, ValueRange args) {
|
|
b.create<linalg::YieldOp>(loc, args[0]);
|
|
})
|
|
.getResult(0);
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
class ConvertAtenBroadcastToOp : public OpConversionPattern<AtenBroadcastToOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenBroadcastToOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
Value self = adaptor.self();
|
|
|
|
SmallVector<Value> inShape;
|
|
if (!getListConstructElements(adaptor.size(), inShape)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: the size list is not from list construct");
|
|
}
|
|
SmallVector<Value> inShapeConverted = getTypeConvertedValues(
|
|
rewriter, op.getLoc(), getTypeConverter(), inShape);
|
|
|
|
Value result;
|
|
if (failed(broadcastToGivenShape(op, rewriter, self, inShapeConverted,
|
|
result))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unable to perform broadcast operation");
|
|
}
|
|
|
|
Type newResultType = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, newResultType, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertAtenContiguousOp : public OpConversionPattern<AtenContiguousOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(AtenContiguousOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
Type resultType = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, adaptor.self());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class ConvertValsemVariantAtenCopyOp
|
|
: public OpConversionPattern<ValsemVariantAtenCopyOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(ValsemVariantAtenCopyOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
|
|
if (failed(verifyLinalgCompatibleTypes(op, rewriter)))
|
|
return failure();
|
|
|
|
Location loc = op.getLoc();
|
|
Value self = adaptor.self();
|
|
Value src = adaptor.src();
|
|
RankedTensorType selfType = self.getType().cast<RankedTensorType>();
|
|
|
|
// The non_blocking should be a constant `False`.
|
|
bool nonBlocking;
|
|
if (!matchPattern(op.non_blocking(), m_TorchConstantBool(&nonBlocking))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: non_blocking must be a constant");
|
|
} else if (nonBlocking) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: non_blocking is expected to be false");
|
|
}
|
|
|
|
// The size of the src tensor can be different from the self but should be
|
|
// broadcastable. Therefore, broadcasting the src tensor to match the size
|
|
// of the self tensor.
|
|
SmallVector<Value> selfSizes = getTensorSizes(rewriter, loc, self);
|
|
for (unsigned i = 0; i < selfSizes.size(); i++)
|
|
selfSizes[i] = castIndexToInt64(rewriter, loc, selfSizes[i]);
|
|
Value broadcastedSrc;
|
|
if (failed(broadcastToGivenShape(op, rewriter, src, selfSizes,
|
|
broadcastedSrc))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unable to perform broadcast operation");
|
|
}
|
|
|
|
AffineMap id = AffineMap::getMultiDimIdentityMap(selfType.getRank(),
|
|
rewriter.getContext());
|
|
SmallVector<StringRef> iteratorTypes(selfType.getRank(),
|
|
getParallelIteratorTypeName());
|
|
Value result = rewriter
|
|
.create<linalg::GenericOp>(
|
|
loc,
|
|
/*resultType=*/selfType,
|
|
/*inputs=*/broadcastedSrc,
|
|
/*outputs=*/self,
|
|
/*indexingMaps=*/llvm::makeArrayRef({id, id}),
|
|
/*iteratorTypes=*/iteratorTypes,
|
|
[](OpBuilder &b, Location loc, ValueRange args) {
|
|
Value result = args[0];
|
|
if (args[0].getType() != args[1].getType()) {
|
|
result = convertScalarToDtype(b, loc, args[0],
|
|
args[1].getType());
|
|
}
|
|
b.create<linalg::YieldOp>(loc, result);
|
|
})
|
|
->getResult(0);
|
|
|
|
Type resultType = getTypeConverter()->convertType(op.getType());
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(op, resultType, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::torch::torch_to_linalg::populateDataMovementPatternsAndLegality(
|
|
TypeConverter &typeConverter, RewritePatternSet &patterns,
|
|
ConversionTarget &target) {
|
|
MLIRContext *context = patterns.getContext();
|
|
target.addIllegalOp<AtenFlattenUsingIntsOp>();
|
|
patterns.add<ConvertAtenFlattenUsingIntsOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenViewOp>();
|
|
patterns.add<ConvertAtenViewOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenSqueezeOp>();
|
|
patterns.add<ConvertAtenSqueezeOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenSqueezeDimOp>();
|
|
patterns.add<ConvertAtenSqueezeDimOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenUnsqueezeOp>();
|
|
patterns.add<ConvertAtenUnsqueezeOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenTransposeIntOp>();
|
|
patterns.add<ConvertAtenTransposeIntOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenPermuteOp>();
|
|
patterns.add<ConvertAtenPermuteOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenSliceTensorOp>();
|
|
patterns.add<ConvertAtenSliceTensorOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenCatOp>();
|
|
patterns.add<ConvertAtenCatOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenBroadcastToOp>();
|
|
patterns.add<ConvertAtenBroadcastToOp>(typeConverter, context);
|
|
target.addIllegalOp<AtenContiguousOp>();
|
|
patterns.add<ConvertAtenContiguousOp>(typeConverter, context);
|
|
target.addIllegalOp<ValsemVariantAtenCopyOp>();
|
|
patterns.add<ConvertValsemVariantAtenCopyOp>(typeConverter, context);
|
|
}
|