d49eabb3fc
# Description Implementation of the op for `torch.aten.unfold`: [TorchToLinalg Op Support #347](https://github.com/nod-ai/SHARK-ModelDev/issues/849) Documentation of op can be found here: [PyTorch Docs](https://pytorch.org/docs/stable/generated/torch.Tensor.unfold.html) For this op, we apply a sliding window of some `size` along a single `dimension`, with `step` in between iterations. `Declaration: aten::unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a)` The resulting `unfolded` tensor modifies the shape of `dimension` to be equal to the number of blocks that the sliding windows extracts/inserts, with an additional dimension of `size` appended (the number of cols of the output tensor directly translates from the size of the sliding window). So if we had a tensor of rank 3 (A x B x C), with dimension = 1, size = 2 and step = 2: (A x B x C) |=> (A x (B - size) // step + 1 x C x size) After extracting the window from the input tensor, we insert the (1 x size) slice into the output tensor. We can make this simpler by mapping the output indices from the input indices, like they do in the official implementation: [PyTorch Code](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/lowering.py#L1694) |
||
---|---|---|
.github | ||
build_tools | ||
docs | ||
externals | ||
include | ||
lib | ||
projects | ||
python | ||
test | ||
tools | ||
utils/bazel | ||
.clang-format | ||
.git-blame-ignore-revs | ||
.gitignore | ||
.gitmodules | ||
.pre-commit-config.yaml | ||
.yamllint.yml | ||
CITATION.cff | ||
CMakeLists.txt | ||
LICENSE | ||
README.md | ||
build-requirements.txt | ||
pyproject.toml | ||
pytorch-hash.txt | ||
pytorch-requirements.txt | ||
requirements.txt | ||
setup.py | ||
test-requirements.txt | ||
torchvision-requirements.txt | ||
whl-requirements.txt |
README.md
The Torch-MLIR Project
The Torch-MLIR project aims to provide first class compiler support from the PyTorch ecosystem to the MLIR ecosystem.
This project is participating in the LLVM Incubator process: as such, it is not part of any official LLVM release. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project is not yet endorsed as a component of LLVM.
PyTorch PyTorch is an open source machine learning framework that facilitates the seamless transition from research and prototyping to production-level deployment.
MLIR The MLIR project offers a novel approach for building extensible and reusable compiler architectures, which address the issue of software fragmentation, reduce the cost of developing domain-specific compilers, improve compilation for heterogeneous hardware, and promote compatibility between existing compilers.
Torch-MLIR Several vendors have adopted MLIR as the middle layer in their systems, enabling them to map frameworks such as PyTorch, JAX, and TensorFlow into MLIR and subsequently lower them to their target hardware. We have observed half a dozen custom lowerings from PyTorch to MLIR, making it easier for hardware vendors to focus on their unique value, rather than needing to implement yet another PyTorch frontend for MLIR. The ultimate aim is to be similar to the current hardware vendors adding LLVM target support, rather than each one implementing Clang or a C++ frontend.
All the roads from PyTorch to Torch MLIR Dialect
We have few paths to lower down to the Torch MLIR Dialect.
- ONNX as the entry points.
- Fx as the entry points
Project Communication
#torch-mlir
channel on the LLVM Discord - this is the most active communication channel- Github issues here
torch-mlir
section of LLVM Discourse
Install torch-mlir snapshot
At the time of writing, we release pre-built snapshots of torch-mlir for Python 3.11 and Python 3.10.
If you have supported Python version, the following commands initialize a virtual environment.
python3.11 -m venv mlir_venv
source mlir_venv/bin/activate
Or, if you want to switch over multiple versions of Python using conda, you can create a conda environment with Python 3.11.
conda create -n torch-mlir python=3.11
conda activate torch-mlir
python -m pip install --upgrade pip
Then, we can install torch-mlir with the corresponding torch and torchvision nightlies.
pip install --pre torch-mlir torchvision \
--extra-index-url https://download.pytorch.org/whl/nightly/cpu \
-f https://github.com/llvm/torch-mlir-release/releases/expanded_assets/dev-wheels
Using torch-mlir
Torch-MLIR is primarily a project that is integrated into compilers to bridge them to PyTorch and ONNX. If contemplating a new integration, it may be helpful to refer to existing downstreams:
While most of the project is exercised via testing paths, there are some ways that an end user can directly use the APIs without further integration:
FxImporter ResNet18
# Get the latest example if you haven't checked out the code
wget https://raw.githubusercontent.com/llvm/torch-mlir/main/projects/pt1/examples/fximporter_resnet18.py
# Run ResNet18 as a standalone script.
python projects/pt1/examples/fximporter_resnet18.py
# Output
load image from https://upload.wikimedia.org/wikipedia/commons/2/26/YellowLabradorLooking_new.jpg
...
PyTorch prediction
[('Labrador retriever', 70.65674591064453), ('golden retriever', 4.988346099853516), ('Saluki, gazelle hound', 4.477451324462891)]
torch-mlir prediction
[('Labrador retriever', 70.6567153930664), ('golden retriever', 4.988325119018555), ('Saluki, gazelle hound', 4.477458477020264)]
Repository Layout
The project follows the conventions of typical MLIR-based projects:
include/torch-mlir
,lib
structure for C++ MLIR compiler dialects/passes.test
for holding test code.tools
fortorch-mlir-opt
and such.python
top level directory for Python code
Developers
If you would like to develop and build torch-mlir from source please look at Development Notes