mirror of https://github.com/llvm/torch-mlir
528 lines
22 KiB
C++
528 lines
22 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
int64_t Torch::toPositiveDim(int64_t dim, int64_t inputRank) {
|
|
return dim >= 0 ? dim : dim + inputRank;
|
|
}
|
|
|
|
bool Torch::isValidDim(int64_t dim, int64_t inputRank) {
|
|
return dim >= 0 && dim < inputRank;
|
|
}
|
|
|
|
std::optional<int64_t>
|
|
Torch::matchLegalConstantIndexIntoListOfSize(Value v, int64_t length) {
|
|
int64_t dim;
|
|
if (!matchPattern(v, m_TorchConstantInt(&dim)))
|
|
return std::nullopt;
|
|
dim = toPositiveDim(dim, length);
|
|
if (!isValidDim(dim, length))
|
|
return std::nullopt;
|
|
return dim;
|
|
}
|
|
|
|
bool Torch::getListConstructElements(Value v, SmallVectorImpl<Value> &elems) {
|
|
auto listConstruct = v.getDefiningOp<PrimListConstructOp>();
|
|
if (!listConstruct)
|
|
return false;
|
|
elems = llvm::to_vector<4>(listConstruct.getElements());
|
|
return true;
|
|
}
|
|
|
|
torch_upstream::ScalarType Torch::getScalarTypeForType(Type type) {
|
|
if (type.isa<Float32Type>())
|
|
return torch_upstream::ScalarType::Float;
|
|
if (type.isa<Float64Type>())
|
|
return torch_upstream::ScalarType::Double;
|
|
if (type.isSignedInteger(64))
|
|
return torch_upstream::ScalarType::Long;
|
|
if (type.isSignedInteger(32))
|
|
return torch_upstream::ScalarType::Int;
|
|
if (type.isSignedInteger(16))
|
|
return torch_upstream::ScalarType::Short;
|
|
if (type.isSignlessInteger(1))
|
|
return torch_upstream::ScalarType::Bool;
|
|
if (type.isBF16())
|
|
return torch_upstream::ScalarType::BFloat16;
|
|
if (type.isF16())
|
|
return torch_upstream::ScalarType::Half;
|
|
if (type.isUnsignedInteger(8))
|
|
return torch_upstream::ScalarType::Byte;
|
|
if (type.isSignedInteger(8))
|
|
return torch_upstream::ScalarType::Char;
|
|
if (type.isa<QUInt8Type>())
|
|
return torch_upstream::ScalarType::QUInt8;
|
|
if (type.isa<QInt8Type>())
|
|
return torch_upstream::ScalarType::QInt8;
|
|
if (type.isa<QInt32Type>())
|
|
return torch_upstream::ScalarType::QInt32;
|
|
if (type.isa<ComplexType>()) {
|
|
mlir::Type complexElemType = type.cast<ComplexType>().getElementType();
|
|
if (complexElemType.isF16())
|
|
return torch_upstream::ScalarType::ComplexHalf;
|
|
if (complexElemType.isF32())
|
|
return torch_upstream::ScalarType::ComplexFloat;
|
|
if (complexElemType.isF64())
|
|
return torch_upstream::ScalarType::ComplexDouble;
|
|
}
|
|
llvm::report_fatal_error("unhandled type for getScalarTypeForType");
|
|
}
|
|
Type Torch::getTypeForTorchType(
|
|
MLIRContext *context, Type type,
|
|
mlir::IntegerType::SignednessSemantics signedness) {
|
|
if (type.isa<Torch::IntType>())
|
|
return IntegerType::get(context, 64, signedness);
|
|
if (type.isa<Torch::FloatType>())
|
|
return Float64Type::get(context);
|
|
llvm::report_fatal_error("unhandled type for getTypeForTorchType");
|
|
}
|
|
|
|
FailureOr<Type>
|
|
Torch::getTypeForScalarType(MLIRContext *context,
|
|
torch_upstream::ScalarType dtypeInt) {
|
|
switch (dtypeInt) {
|
|
case torch_upstream::ScalarType::Float:
|
|
return Float32Type::get(context);
|
|
case torch_upstream::ScalarType::Double:
|
|
return Float64Type::get(context);
|
|
case torch_upstream::ScalarType::Long:
|
|
return IntegerType::get(context, 64, mlir::IntegerType::Signed);
|
|
case torch_upstream::ScalarType::Int:
|
|
return IntegerType::get(context, 32, mlir::IntegerType::Signed);
|
|
case torch_upstream::ScalarType::Short:
|
|
return IntegerType::get(context, 16, mlir::IntegerType::Signed);
|
|
case torch_upstream::ScalarType::Bool:
|
|
return IntegerType::get(context, 1);
|
|
case torch_upstream::ScalarType::BFloat16:
|
|
return mlir::FloatType::getBF16(context);
|
|
case torch_upstream::ScalarType::Half:
|
|
return mlir::FloatType::getF16(context);
|
|
case torch_upstream::ScalarType::Byte:
|
|
return mlir::IntegerType::get(context, 8, mlir::IntegerType::Unsigned);
|
|
case torch_upstream::ScalarType::Char:
|
|
return mlir::IntegerType::get(context, 8, mlir::IntegerType::Signed);
|
|
case torch_upstream::ScalarType::QUInt8:
|
|
return QUInt8Type::get(context);
|
|
case torch_upstream::ScalarType::QInt8:
|
|
return QInt8Type::get(context);
|
|
case torch_upstream::ScalarType::QInt32:
|
|
return QInt32Type::get(context);
|
|
case torch_upstream::ScalarType::ComplexHalf:
|
|
return mlir::ComplexType::get(Float16Type::get(context));
|
|
case torch_upstream::ScalarType::ComplexFloat:
|
|
return mlir::ComplexType::get(Float32Type::get(context));
|
|
case torch_upstream::ScalarType::ComplexDouble:
|
|
return mlir::ComplexType::get(Float64Type::get(context));
|
|
case torch_upstream::ScalarType::Undefined:
|
|
return failure();
|
|
default:
|
|
llvm::report_fatal_error("unhandled type for getTypeForScalarType");
|
|
}
|
|
}
|
|
|
|
FailureOr<Type>
|
|
Torch::getTorchTypeForScalarType(MLIRContext *context,
|
|
torch_upstream::ScalarType dtypeInt) {
|
|
switch (dtypeInt) {
|
|
case torch_upstream::ScalarType::Double:
|
|
return Torch::FloatType::get(context);
|
|
case torch_upstream::ScalarType::Long:
|
|
return Torch::IntType::get(context);
|
|
case torch_upstream::ScalarType::Undefined:
|
|
default:
|
|
return failure();
|
|
}
|
|
}
|
|
|
|
Type Torch::getDefaultDtypeForTorchScalar(Type type) {
|
|
MLIRContext *context = type.getContext();
|
|
if (type.isa<Torch::FloatType>()) {
|
|
// For now, use float32 which is the initial default dtype returned by
|
|
// `torch.get_default_dtype`.
|
|
return Float32Type::get(context);
|
|
}
|
|
if (type.isa<Torch::IntType>())
|
|
return IntegerType::get(context, 64, IntegerType::Signed);
|
|
if (type.isa<Torch::BoolType>())
|
|
return IntegerType::get(context, 1);
|
|
llvm_unreachable(
|
|
"getDefaultDtypeForTorchScalar called on an unsupported type");
|
|
}
|
|
|
|
Type Torch::getBuiltInTypeForTorchScalar(Type type) {
|
|
MLIRContext *context = type.getContext();
|
|
if (type.isa<Torch::FloatType>())
|
|
return Float64Type::get(context);
|
|
if (type.isa<Torch::IntType>())
|
|
return IntegerType::get(context, 64, IntegerType::Signed);
|
|
if (type.isa<Torch::BoolType>())
|
|
return IntegerType::get(context, 1);
|
|
llvm_unreachable(
|
|
"getBuiltInTypeForTorchScalar called on an unsupported type");
|
|
}
|
|
|
|
Value Torch::getDtypeIntValueForType(PatternRewriter &rewriter, Location loc,
|
|
Type dtype) {
|
|
int intType = (int)getScalarTypeForType(dtype);
|
|
return rewriter.create<ConstantIntOp>(loc,
|
|
rewriter.getI64IntegerAttr(intType));
|
|
}
|
|
|
|
// Helper to convert a tensor to a specific scalar type.
|
|
Value Torch::convertTensorToDtype(PatternRewriter &rewriter, Location loc,
|
|
Value input, Type dtype) {
|
|
BaseTensorType origType = input.getType().cast<BaseTensorType>();
|
|
Type newType = origType.getWithSizesAndDtype(origType.getSizes(), dtype);
|
|
// `convertIntVal` contains the corresponding integer for the dtype which is
|
|
// used by the aten.to.dtype op.
|
|
Value convertIntVal = getDtypeIntValueForType(rewriter, loc, dtype);
|
|
Value falseVal = rewriter.create<ConstantBoolOp>(loc, false);
|
|
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
|
|
Value converted = rewriter.create<AtenToDtypeOp>(
|
|
loc, newType, input, convertIntVal, falseVal, falseVal, noneVal);
|
|
return converted;
|
|
}
|
|
|
|
bool Torch::isBuiltInType(Type type) {
|
|
return isa<BuiltinDialect>(type.getDialect());
|
|
}
|
|
|
|
std::optional<unsigned> Torch::getTensorRank(Value tensor) {
|
|
BaseTensorType tensorType = tensor.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasSizes())
|
|
return std::nullopt;
|
|
return tensorType.getSizes().size();
|
|
}
|
|
|
|
bool Torch::isViewLikeOp(Operation *op) {
|
|
// AtenContiguousOp might return a view, so this is conservatively
|
|
// correct. We could potentially be more precise and identify the cases
|
|
// that it does not return a view and treat those as having value
|
|
// semantics.
|
|
return isa<AtenBroadcastToOp, AtenContiguousOp, AtenDetachOp, AtenExpandAsOp,
|
|
AtenExpandOp, AtenFlattenUsingIntsOp, AtenUnflattenIntOp,
|
|
AtenPermuteOp, AtenReshapeOp, Aten_ReshapeAliasOp, AtenSelectIntOp,
|
|
AtenSliceTensorOp, AtenSqueezeDimOp, AtenSqueezeOp, AtenTOp,
|
|
AtenToDtypeOp, AtenTransposeIntOp, AtenUnsqueezeOp, AtenViewOp,
|
|
TensorStaticInfoCastOp, AtenToDtypeLayoutOp, AtenNumpyTOp,
|
|
AtenNarrowOp, AtenNarrowTensorOp, AtenToDeviceOp, PrimsSqueezeOp,
|
|
AtenMovedimIntOp, PrimsViewOfOp, AtenRealOp, AtenImagOp,
|
|
PrimsSplitDimOp, AtenViewAsComplexOp, AtenViewAsRealOp,
|
|
AtenPixelShuffleOp, AtenDiagonalOp>(op);
|
|
}
|
|
|
|
Value Torch::getConstantWithGivenDtypeAndValue(PatternRewriter &rewriter,
|
|
Location loc, float value,
|
|
Type dtype) {
|
|
// Creating constants satisfying backend contract.
|
|
if (dtype.isInteger(64) || dtype.isInteger(32) || dtype.isInteger(16) ||
|
|
dtype.isInteger(8) || dtype.isInteger(1))
|
|
return rewriter.create<ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr((int64_t)value));
|
|
if (dtype.isF64() || dtype.isF32() || dtype.isF16() || dtype.isBF16())
|
|
return rewriter.create<ConstantFloatOp>(loc,
|
|
rewriter.getF64FloatAttr(value));
|
|
llvm::report_fatal_error(
|
|
"unhandled type for getConstantWithGivenDtypeAndValue");
|
|
}
|
|
|
|
// Return the number of elements of a tensor if the shape is static; otherwise,
|
|
// return -1.
|
|
int64_t Torch::getNumberOfElements(RankedTensorType inputType) {
|
|
if (!inputType.hasStaticShape())
|
|
return -1;
|
|
SmallVector<int64_t> inputShape =
|
|
makeShapeTorchCompatible(inputType.getShape());
|
|
int64_t numel = 1;
|
|
for (int64_t i = 0; i < inputType.getRank(); i++)
|
|
numel *= inputShape[i];
|
|
return numel;
|
|
}
|
|
|
|
SmallVector<int64_t> Torch::makeShapeLLVMCompatible(ArrayRef<int64_t> shape) {
|
|
SmallVector<int64_t> updatedShape(shape);
|
|
int64_t kDynamic = ShapedType::kDynamic;
|
|
for (unsigned i = 0; i < shape.size(); i++) {
|
|
assert(shape[i] >= 0 || shape[i] == kUnknownSize);
|
|
if (shape[i] == kUnknownSize)
|
|
updatedShape[i] = kDynamic;
|
|
}
|
|
return updatedShape;
|
|
}
|
|
|
|
SmallVector<int64_t> Torch::makeShapeTorchCompatible(ArrayRef<int64_t> shape) {
|
|
SmallVector<int64_t> updatedShape(shape);
|
|
int64_t kDynamic = ShapedType::kDynamic;
|
|
for (unsigned i = 0; i < shape.size(); i++) {
|
|
assert(shape[i] >= 0 || shape[i] == kDynamic);
|
|
if (shape[i] == kDynamic)
|
|
updatedShape[i] = kUnknownSize;
|
|
}
|
|
return updatedShape;
|
|
}
|
|
|
|
// Helper function to squeeze the input tensor at given dim.
|
|
// Return the squeezed tensor or failure.
|
|
FailureOr<Value> Torch::squeezeTensor(PatternRewriter &rewriter, Operation *op,
|
|
Location loc, int64_t dim, Value input) {
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
if (!inputType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(loc, "input tensor must have size");
|
|
}
|
|
SmallVector<int64_t> inputShape{inputType.getSizes()};
|
|
unsigned inputRank = inputShape.size();
|
|
dim = toPositiveDim(dim, inputRank);
|
|
if (!isValidDim(dim, inputRank)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "dimension to be squeezed is an invalid dim");
|
|
}
|
|
inputShape.erase(inputShape.begin() + dim);
|
|
Type squeezedType =
|
|
inputType.getWithSizesAndDtype(inputShape, inputType.getOptionalDtype());
|
|
|
|
Value cstDim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(dim));
|
|
// Adding a check to verify if the dimension to be squeezed has size 1 or not.
|
|
Value cstOne =
|
|
rewriter.create<Torch::ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
|
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, input, cstDim);
|
|
Value cmp = rewriter.create<Torch::AtenEqIntOp>(loc, dimSize, cstOne);
|
|
rewriter.create<Torch::RuntimeAssertOp>(
|
|
loc, cmp,
|
|
"squeeze operation possible for dim only when input_shape[dim] == 1.");
|
|
|
|
Value result =
|
|
rewriter.create<AtenSqueezeDimOp>(loc, squeezedType, input, cstDim);
|
|
return result;
|
|
}
|
|
|
|
// Helper function to unsqueeze the input tensor at given dim.
|
|
// Return the unsqueezed tensor or failure.
|
|
FailureOr<Value> Torch::unsqueezeTensor(PatternRewriter &rewriter,
|
|
Operation *op, Value input, Value dim) {
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
if (!inputType.hasSizes()) {
|
|
return rewriter.notifyMatchFailure(op, "input tensor must have size");
|
|
}
|
|
|
|
SmallVector<int64_t> unsqueezedShape;
|
|
ArrayRef<int64_t> inputShape = inputType.getSizes();
|
|
// `input` has a reduced rank. Hence add 1.
|
|
int64_t unsqueezedRank = inputShape.size() + 1;
|
|
int64_t dimInt = 0;
|
|
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
|
|
dimInt = toPositiveDim(dimInt, unsqueezedRank);
|
|
if (!isValidDim(dimInt, unsqueezedRank)) {
|
|
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
}
|
|
unsqueezedShape.append(inputShape.begin(), inputShape.end());
|
|
unsqueezedShape.insert(unsqueezedShape.begin() + dimInt, 1);
|
|
} else {
|
|
unsqueezedShape.resize(unsqueezedRank, kUnknownSize);
|
|
}
|
|
Type unsqueezedType = inputType.getWithSizesAndDtype(
|
|
unsqueezedShape, inputType.getOptionalDtype());
|
|
Value unsqueezed = rewriter.create<AtenUnsqueezeOp>(
|
|
op->getLoc(), unsqueezedType, input, dim);
|
|
return unsqueezed;
|
|
}
|
|
|
|
// Checks whether the `shapeA` and `shapeB` are broadcast compatible or not. If
|
|
// yes, then computes the final broadcast shape.
|
|
void Torch::computeBroadcastShape(PatternRewriter &rewriter, Location loc,
|
|
Value inputA, Value inputB,
|
|
SmallVector<int64_t> &resultShape,
|
|
SmallVector<Value> &resultShapeValue) {
|
|
SmallVector<int64_t> shapeA{
|
|
inputA.getType().cast<BaseTensorType>().getSizes()};
|
|
SmallVector<int64_t> shapeB{
|
|
inputB.getType().cast<BaseTensorType>().getSizes()};
|
|
unsigned rankA = shapeA.size();
|
|
unsigned rankB = shapeB.size();
|
|
unsigned minRank = rankA > rankB ? rankB : rankA;
|
|
// Check whether the shapes of the tensors are broadcastable or not.
|
|
// Two tensors are “broadcastable” if the following rules hold:
|
|
// 1.) Each tensor has at least one dimension.
|
|
// 2.) When iterating over the dimension sizes, starting at the trailing
|
|
// dimension, the dimension sizes must either be equal, one of them is 1, or
|
|
// one of them does not exist.
|
|
for (unsigned i = 0; i < minRank; i++) {
|
|
Value sizeDimA = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(rankA - i - 1));
|
|
Value sizeDimB = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(rankB - i - 1));
|
|
Value sizeInputA =
|
|
rewriter.createOrFold<AtenSizeIntOp>(loc, inputA, sizeDimA);
|
|
Value sizeInputB =
|
|
rewriter.createOrFold<AtenSizeIntOp>(loc, inputB, sizeDimB);
|
|
Value torchCstOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
Value cmpSizeAEqualsSizeB =
|
|
rewriter.create<Torch::AtenEqIntOp>(loc, sizeInputA, sizeInputB);
|
|
Value cmpSizeAEqualsOne =
|
|
rewriter.create<Torch::AtenEqIntOp>(loc, sizeInputA, torchCstOne);
|
|
Value cmpSizeBEqualsOne =
|
|
rewriter.create<Torch::AtenEqIntOp>(loc, sizeInputB, torchCstOne);
|
|
Value anyBoolOpList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(cmpSizeAEqualsOne.getType()),
|
|
SmallVector<Value>{cmpSizeAEqualsSizeB, cmpSizeAEqualsOne,
|
|
cmpSizeBEqualsOne});
|
|
Value cmp = rewriter.create<Torch::AtenAnyBoolOp>(loc, anyBoolOpList);
|
|
rewriter.create<Torch::RuntimeAssertOp>(
|
|
loc, cmp, "tensors are not broadcast compatible");
|
|
}
|
|
// If we reach here then it means both the shapes are broadcast compatible.
|
|
resultShape = rankA >= rankB ? shapeA : shapeB;
|
|
Value shapeTensor = rankA >= rankB ? inputA : inputB;
|
|
for (unsigned i = 0; i < resultShape.size(); i++) {
|
|
Value sizeDim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
resultShapeValue.push_back(
|
|
rewriter.createOrFold<AtenSizeIntOp>(loc, shapeTensor, sizeDim));
|
|
}
|
|
|
|
unsigned resultRank = resultShape.size();
|
|
for (unsigned i = 0; i < minRank; i++) {
|
|
Value sizeDimA = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(rankA - i - 1));
|
|
Value sizeDimB = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(rankB - i - 1));
|
|
Value sizeInputA =
|
|
rewriter.createOrFold<AtenSizeIntOp>(loc, inputA, sizeDimA);
|
|
Value sizeInputB =
|
|
rewriter.createOrFold<AtenSizeIntOp>(loc, inputB, sizeDimB);
|
|
resultShapeValue[resultRank - i - 1] =
|
|
rewriter.create<PrimMaxIntOp>(loc, sizeInputA, sizeInputB);
|
|
if (shapeA[rankA - i - 1] == kUnknownSize ||
|
|
shapeB[rankB - i - 1] == kUnknownSize) {
|
|
resultShape[resultRank - i - 1] = kUnknownSize;
|
|
} else {
|
|
resultShape[resultRank - i - 1] =
|
|
std::max(shapeA[rankA - i - 1], shapeB[rankB - i - 1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Torch::isAssumingStrictSymbolicShapes(Block *block) {
|
|
for (Operation *parentOp = block->getParentOp(); parentOp;
|
|
parentOp = parentOp->getParentOp()) {
|
|
if (parentOp->hasAttr("torch.assume_strict_symbolic_shapes"))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
LogicalResult Torch::checkDefaultStrideHelper(Operation *op,
|
|
PatternRewriter &rewriter,
|
|
Value opSize, Value opStride,
|
|
Location loc) {
|
|
|
|
SmallVector<int64_t> sizeListInts, strideListInts;
|
|
if (matchPattern(opSize, m_TorchListOfConstantInts(sizeListInts)) &&
|
|
matchPattern(opStride, m_TorchListOfConstantInts(strideListInts))) {
|
|
|
|
// We only support the cases with default stride values.
|
|
// For ex: aten.new_empty_strided(self, size=[2, 3, 4], stride=[12, 4, 1])
|
|
// Here the stride[0] == size[1] * size[2], stride[1] == size[2], and
|
|
// stride[2] == 1.
|
|
bool isDefaultStride = true;
|
|
for (unsigned i = 0; i < strideListInts.size(); i++) {
|
|
int64_t defaultStride = 1;
|
|
for (unsigned j = i + 1; j < sizeListInts.size(); j++)
|
|
defaultStride *= sizeListInts[j];
|
|
if (defaultStride != strideListInts[i]) {
|
|
isDefaultStride = false;
|
|
break;
|
|
}
|
|
}
|
|
if (!isDefaultStride)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only default strides supported for empty_strided op");
|
|
|
|
return success();
|
|
|
|
} else {
|
|
SmallVector<Value> sizeListValues;
|
|
if (!getListConstructElements(opSize, sizeListValues))
|
|
return rewriter.notifyMatchFailure(op, "couldn't get size list values");
|
|
SmallVector<Value> strideListValues;
|
|
if (!getListConstructElements(opStride, strideListValues))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"couldn't get stride list values.");
|
|
SmallVector<Value> boolVector;
|
|
for (unsigned i = 0; i < strideListValues.size(); i++) {
|
|
Value defaultStride = rewriter.createOrFold<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
for (unsigned j = i + 1; j < sizeListValues.size(); j++) {
|
|
defaultStride = rewriter.createOrFold<Torch::AtenMulIntOp>(
|
|
loc, defaultStride, sizeListValues[j]);
|
|
}
|
|
boolVector.push_back(rewriter.createOrFold<Torch::AtenEqIntOp>(
|
|
loc, defaultStride, strideListValues[i]));
|
|
}
|
|
Value allBoolOpList = rewriter.createOrFold<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(rewriter.getType<Torch::BoolType>()),
|
|
boolVector);
|
|
Value cmp = rewriter.createOrFold<Torch::AtenAllBoolOp>(loc, allBoolOpList);
|
|
rewriter.createOrFold<Torch::RuntimeAssertOp>(
|
|
loc, cmp, "not all strides are default");
|
|
return success();
|
|
}
|
|
}
|
|
|
|
// Helper to create a tensor filled with the given scalar. Scalar would be
|
|
// converted the to the element type of the given tensor type.
|
|
Value Torch::createInitTensor(PatternRewriter &rewriter, Location loc,
|
|
BaseTensorType resultType, Value scalar,
|
|
Value sizeList) {
|
|
assert(resultType.hasDtype() && "result must have dtype");
|
|
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
|
|
Value dtype = getDtypeIntValueForType(rewriter, loc, resultType.getDtype());
|
|
return rewriter.create<AtenFullOp>(loc, resultType, sizeList, scalar, dtype,
|
|
/*layout=*/noneVal,
|
|
/*device=*/noneVal,
|
|
/*memory_format=*/noneVal);
|
|
}
|
|
|
|
// Helper to create a rank 0 tensor filled with the given `scalar`. `scalar`
|
|
// would be converted to the element type of the given `inputType`.
|
|
Value Torch::createRank0Tensor(PatternRewriter &rewriter, Location loc,
|
|
BaseTensorType inputType, Value scalar) {
|
|
assert(inputType.hasDtype() && "input must have dtype");
|
|
SmallVector<int64_t> sizes;
|
|
BaseTensorType rank0TensorTy =
|
|
inputType.getWithSizesAndDtype(ArrayRef(sizes), inputType.getDtype())
|
|
.cast<BaseTensorType>();
|
|
Value dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(inputType.getContext())),
|
|
ValueRange{});
|
|
return createInitTensor(rewriter, loc, rank0TensorTy, scalar, dimList);
|
|
}
|
|
|
|
LogicalResult Torch::getTransposedType(BaseTensorType inType, int64_t dimA,
|
|
int64_t dimB, Type &transposedType) {
|
|
if (!inType.hasSizes())
|
|
return failure();
|
|
SmallVector<int64_t> shape(inType.getSizes());
|
|
int64_t tmp = shape[dimA];
|
|
shape[dimA] = shape[dimB];
|
|
shape[dimB] = tmp;
|
|
transposedType = inType.getWithSizesAndDtype(llvm::ArrayRef(shape),
|
|
inType.getOptionalDtype());
|
|
return success();
|
|
}
|