mirror of https://github.com/llvm/torch-mlir
203 lines
7.4 KiB
Python
203 lines
7.4 KiB
Python
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
# See https://llvm.org/LICENSE.txt for license information.
|
|
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
import re
|
|
from typing import Iterable
|
|
import numpy as np
|
|
|
|
from _npcomp.mlir import ir
|
|
|
|
from npcomp.dialect import Numpy
|
|
from npcomp.exporter import *
|
|
from npcomp.types import *
|
|
from npcomp.tracing.context import *
|
|
from npcomp.tracing.emitters import *
|
|
|
|
|
|
class ModuleBuilder:
|
|
"""Builds an MLIR module by tracing functions."""
|
|
|
|
def __init__(self, mlir_context=None, emitter_registry=None):
|
|
self.context = mlir_context if mlir_context else ir.MLIRContext()
|
|
# TODO: Instead of bootstrapping a large module, populate imports
|
|
# dynamically.
|
|
self.module = Numpy.load_builtin_module(self.context)
|
|
self.helper = Numpy.DialectHelper(self.context)
|
|
self.emitters = (emitter_registry
|
|
if emitter_registry else EmitterRegistry.create_default())
|
|
|
|
def trace(self, *export_py_funcs: ExportPyFunction):
|
|
"""Traces exported py functions."""
|
|
for export_py_func in export_py_funcs:
|
|
assert isinstance(export_py_func, ExportPyFunction), (
|
|
"Expected an exported python function (from the Exporter class)")
|
|
tracer = FunctionTracer(self, export_py_func)
|
|
with tracer:
|
|
tracer.trace()
|
|
|
|
|
|
class FunctionTracer(TraceContext):
|
|
"""A trace of a single function."""
|
|
__slots__ = [
|
|
"module_builder",
|
|
"epf",
|
|
"_args_array_params",
|
|
"_f",
|
|
"_f_types",
|
|
"_helper",
|
|
"_mlir_m",
|
|
"_mlir_c",
|
|
"_python_args",
|
|
"_result_array_params",
|
|
"_traced_arrays",
|
|
]
|
|
|
|
def __init__(self, module_builder: ModuleBuilder, epf: ExportPyFunction):
|
|
super().__init__(desc="[trace of %s]" % epf.__name__)
|
|
self.module_builder = module_builder
|
|
self.epf = epf
|
|
self._traced_arrays = {} # Mapping of TracedArray to current consumer value
|
|
self._validate()
|
|
|
|
# Alias some parent members for convenience.
|
|
self._mlir_m = module_builder.module
|
|
self._mlir_c = module_builder.context
|
|
self._helper = module_builder.helper
|
|
|
|
# Extract ArrayParams for all args and results.
|
|
self._args_array_params = [
|
|
ArrayParams.from_constraints(arg.constraints)
|
|
for arg in self.epf.sig.args
|
|
]
|
|
self._python_args = [None] * len(self._args_array_params)
|
|
self._result_array_params = ArrayParams.from_constraints(
|
|
self.epf.sig.result.constraints)
|
|
|
|
# Create the MLIR function.
|
|
self._f, self._f_types = self._create_mlir_function()
|
|
self._create_trace_roots()
|
|
|
|
def trace(self):
|
|
# Invoke the python function with placeholders.
|
|
# TODO: More sophisticated signature merging
|
|
# TODO: Multiple results
|
|
# TODO: Error reporting
|
|
h = self._helper
|
|
py_results = (self.epf.pyfunc(*self._python_args),)
|
|
if len(py_results) != len(self._f_types):
|
|
raise TracingError("Traced function returned != %d results: %r" % (
|
|
len(self._f_types),
|
|
py_results,
|
|
))
|
|
|
|
# Narrow all results to the declared return types.
|
|
return_operands = []
|
|
for py_result, mlir_result_type in zip(py_results, self._f_types):
|
|
mlir_result = self.get_traced_array_value(py_result)
|
|
if mlir_result is None:
|
|
raise TracingError("Unregistered traced array: %r", (py_result,))
|
|
# narrow to declared result type.
|
|
return_operands.extend(
|
|
h.numpy_narrow_op(mlir_result_type, mlir_result).results)
|
|
h.return_op(return_operands)
|
|
|
|
def set_traced_array(self, traced_array, value):
|
|
"""Sets the current SSA value for a traced_array."""
|
|
assert isinstance(traced_array, TracedArray)
|
|
self._traced_arrays[traced_array] = value
|
|
|
|
def get_traced_array_value(self, traced_array):
|
|
return self._traced_arrays.get(traced_array)
|
|
|
|
def _validate(self):
|
|
if not all(
|
|
arg.type_class == TypeClass.NdArray for arg in self.epf.sig.args):
|
|
raise NotImplementedError("Non NdArray args: %r" % (self.epf.sig.args,))
|
|
if not self.epf.sig.result.type_class == TypeClass.NdArray:
|
|
raise NotImplementedError("Non NdArray result: %r" %
|
|
(self.epf.sig.result,))
|
|
|
|
def _create_mlir_function(self):
|
|
mlir_c = self._mlir_c
|
|
mlir_m = self._mlir_m
|
|
h = self._helper
|
|
epf = self.epf
|
|
f_args = [
|
|
mlir_c.parse_type(ap.mlir_tensor_type_asm)
|
|
for ap in self._args_array_params
|
|
]
|
|
f_types = [
|
|
mlir_c.parse_type(self._result_array_params.mlir_tensor_type_asm)
|
|
]
|
|
h.builder.insert_before_terminator(mlir_m.first_block)
|
|
f_type = h.function_type(f_args, f_types)
|
|
f = h.func_op(epf.__name__, f_type, create_entry_block=True)
|
|
return f, f_types
|
|
|
|
def _create_trace_roots(self):
|
|
entry_block = self._f.first_block
|
|
for index, ap in enumerate(self._args_array_params):
|
|
if ap is not None:
|
|
ta = TracedArray(self)
|
|
self.set_traced_array(ta, entry_block.args[index])
|
|
self._python_args[index] = ta
|
|
|
|
def _resolve_input_ssa_values(self, trace_values: Iterable[TraceValue]):
|
|
"""Resolves input python values to SSA values."""
|
|
ssa_values = []
|
|
for tv in trace_values:
|
|
assert tv.type == TraceValueType.NDARRAY, (
|
|
"Unsupported TraceValueType: %r" % tv.type)
|
|
ssa_value = self.get_traced_array_value(tv.value)
|
|
if ssa_value is None:
|
|
raise TracingError(
|
|
"Required a traced python NDARRAY but not found: %r" % (tv,))
|
|
ssa_values.append(ssa_value)
|
|
return ssa_values
|
|
|
|
def _resolve_result_py_values(self,
|
|
trace_value_types: Iterable[TraceValueType],
|
|
ssa_values):
|
|
"""Resolves result SSA values to runtime python values."""
|
|
assert len(trace_value_types) == len(ssa_values), (
|
|
"Mismatched emitter declared result types and results")
|
|
py_values = []
|
|
for trace_value_type, ssa_value in zip(trace_value_types, ssa_values):
|
|
assert trace_value_type == TraceValueType.NDARRAY, (
|
|
"Unsupported TraceValueType: %r" % trace_value_type)
|
|
py_value = TracedArray(self)
|
|
self.set_traced_array(py_value, ssa_value)
|
|
py_values.append(py_value)
|
|
return py_values
|
|
|
|
def _emit_invocation(self, emitter: FuncEmitter, invocation: TraceInvocation):
|
|
tv_map = emitter.map_invocation(invocation)
|
|
input_ssa_values = self._resolve_input_ssa_values(tv_map.input_trace_values)
|
|
request = EmissionRequest(input_ssa_values,
|
|
dialect_helper=self._helper,
|
|
extra=tv_map.extra)
|
|
result_ssa_values = emitter.emit(request)
|
|
py_values = self._resolve_result_py_values(tv_map.result_trace_value_types,
|
|
result_ssa_values)
|
|
return emitter.map_results(py_values, tv_map.extra)
|
|
|
|
def _handle_ufunc(self, ufunc, method, inputs, kwargs):
|
|
emitter = self.module_builder.emitters.lookup_ufunc(ufunc, method)
|
|
if not emitter:
|
|
return NotImplemented
|
|
invocation = TraceInvocation(inputs, kwargs, Protocol.UFUNC, method)
|
|
return self._emit_invocation(emitter, invocation)
|
|
|
|
def _handle_array_func(self, func, types, inputs, kwargs):
|
|
emitter = self.module_builder.emitters.lookup_array_func(func)
|
|
if not emitter:
|
|
return NotImplemented
|
|
invocation = TraceInvocation(inputs, kwargs, Protocol.ARRAY_FUNC)
|
|
return self._emit_invocation(emitter, invocation)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
doctest.testmod()
|