torch-mlir/python/npcomp/tracing/mlir_trace.py

203 lines
7.4 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import re
from typing import Iterable
import numpy as np
from _npcomp.mlir import ir
from npcomp.dialect import Numpy
from npcomp.exporter import *
from npcomp.types import *
from npcomp.tracing.context import *
from npcomp.tracing.emitters import *
class ModuleBuilder:
"""Builds an MLIR module by tracing functions."""
def __init__(self, mlir_context=None, emitter_registry=None):
self.context = mlir_context if mlir_context else ir.MLIRContext()
# TODO: Instead of bootstrapping a large module, populate imports
# dynamically.
self.module = Numpy.load_builtin_module(self.context)
self.helper = Numpy.DialectHelper(self.context)
self.emitters = (emitter_registry
if emitter_registry else EmitterRegistry.create_default())
def trace(self, *export_py_funcs: ExportPyFunction):
"""Traces exported py functions."""
for export_py_func in export_py_funcs:
assert isinstance(export_py_func, ExportPyFunction), (
"Expected an exported python function (from the Exporter class)")
tracer = FunctionTracer(self, export_py_func)
with tracer:
tracer.trace()
class FunctionTracer(TraceContext):
"""A trace of a single function."""
__slots__ = [
"module_builder",
"epf",
"_args_array_params",
"_f",
"_f_types",
"_helper",
"_mlir_m",
"_mlir_c",
"_python_args",
"_result_array_params",
"_traced_arrays",
]
def __init__(self, module_builder: ModuleBuilder, epf: ExportPyFunction):
super().__init__(desc="[trace of %s]" % epf.__name__)
self.module_builder = module_builder
self.epf = epf
self._traced_arrays = {} # Mapping of TracedArray to current consumer value
self._validate()
# Alias some parent members for convenience.
self._mlir_m = module_builder.module
self._mlir_c = module_builder.context
self._helper = module_builder.helper
# Extract ArrayParams for all args and results.
self._args_array_params = [
ArrayParams.from_constraints(arg.constraints)
for arg in self.epf.sig.args
]
self._python_args = [None] * len(self._args_array_params)
self._result_array_params = ArrayParams.from_constraints(
self.epf.sig.result.constraints)
# Create the MLIR function.
self._f, self._f_types = self._create_mlir_function()
self._create_trace_roots()
def trace(self):
# Invoke the python function with placeholders.
# TODO: More sophisticated signature merging
# TODO: Multiple results
# TODO: Error reporting
h = self._helper
py_results = (self.epf.pyfunc(*self._python_args),)
if len(py_results) != len(self._f_types):
raise TracingError("Traced function returned != %d results: %r" % (
len(self._f_types),
py_results,
))
# Narrow all results to the declared return types.
return_operands = []
for py_result, mlir_result_type in zip(py_results, self._f_types):
mlir_result = self.get_traced_array_value(py_result)
if mlir_result is None:
raise TracingError("Unregistered traced array: %r", (py_result,))
# narrow to declared result type.
return_operands.extend(
h.numpy_narrow_op(mlir_result_type, mlir_result).results)
h.return_op(return_operands)
def set_traced_array(self, traced_array, value):
"""Sets the current SSA value for a traced_array."""
assert isinstance(traced_array, TracedArray)
self._traced_arrays[traced_array] = value
def get_traced_array_value(self, traced_array):
return self._traced_arrays.get(traced_array)
def _validate(self):
if not all(
arg.type_class == TypeClass.NdArray for arg in self.epf.sig.args):
raise NotImplementedError("Non NdArray args: %r" % (self.epf.sig.args,))
if not self.epf.sig.result.type_class == TypeClass.NdArray:
raise NotImplementedError("Non NdArray result: %r" %
(self.epf.sig.result,))
def _create_mlir_function(self):
mlir_c = self._mlir_c
mlir_m = self._mlir_m
h = self._helper
epf = self.epf
f_args = [
mlir_c.parse_type(ap.mlir_tensor_type_asm)
for ap in self._args_array_params
]
f_types = [
mlir_c.parse_type(self._result_array_params.mlir_tensor_type_asm)
]
h.builder.insert_before_terminator(mlir_m.first_block)
f_type = h.function_type(f_args, f_types)
f = h.func_op(epf.__name__, f_type, create_entry_block=True)
return f, f_types
def _create_trace_roots(self):
entry_block = self._f.first_block
for index, ap in enumerate(self._args_array_params):
if ap is not None:
ta = TracedArray(self)
self.set_traced_array(ta, entry_block.args[index])
self._python_args[index] = ta
def _resolve_input_ssa_values(self, trace_values: Iterable[TraceValue]):
"""Resolves input python values to SSA values."""
ssa_values = []
for tv in trace_values:
assert tv.type == TraceValueType.NDARRAY, (
"Unsupported TraceValueType: %r" % tv.type)
ssa_value = self.get_traced_array_value(tv.value)
if ssa_value is None:
raise TracingError(
"Required a traced python NDARRAY but not found: %r" % (tv,))
ssa_values.append(ssa_value)
return ssa_values
def _resolve_result_py_values(self,
trace_value_types: Iterable[TraceValueType],
ssa_values):
"""Resolves result SSA values to runtime python values."""
assert len(trace_value_types) == len(ssa_values), (
"Mismatched emitter declared result types and results")
py_values = []
for trace_value_type, ssa_value in zip(trace_value_types, ssa_values):
assert trace_value_type == TraceValueType.NDARRAY, (
"Unsupported TraceValueType: %r" % trace_value_type)
py_value = TracedArray(self)
self.set_traced_array(py_value, ssa_value)
py_values.append(py_value)
return py_values
def _emit_invocation(self, emitter: FuncEmitter, invocation: TraceInvocation):
tv_map = emitter.map_invocation(invocation)
input_ssa_values = self._resolve_input_ssa_values(tv_map.input_trace_values)
request = EmissionRequest(input_ssa_values,
dialect_helper=self._helper,
extra=tv_map.extra)
result_ssa_values = emitter.emit(request)
py_values = self._resolve_result_py_values(tv_map.result_trace_value_types,
result_ssa_values)
return emitter.map_results(py_values, tv_map.extra)
def _handle_ufunc(self, ufunc, method, inputs, kwargs):
emitter = self.module_builder.emitters.lookup_ufunc(ufunc, method)
if not emitter:
return NotImplemented
invocation = TraceInvocation(inputs, kwargs, Protocol.UFUNC, method)
return self._emit_invocation(emitter, invocation)
def _handle_array_func(self, func, types, inputs, kwargs):
emitter = self.module_builder.emitters.lookup_array_func(func)
if not emitter:
return NotImplemented
invocation = TraceInvocation(inputs, kwargs, Protocol.ARRAY_FUNC)
return self._emit_invocation(emitter, invocation)
if __name__ == "__main__":
import doctest
doctest.testmod()