mirror of https://github.com/llvm/torch-mlir
2528 lines
102 KiB
C++
2528 lines
102 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
// Also available under a BSD-style license. See LICENSE.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PassDetail.h"
|
|
|
|
#include "mlir/IR/BuiltinDialect.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
|
|
#include "torch-mlir/Dialect/Torch/IR/TorchTypes.h"
|
|
#include "torch-mlir/Dialect/Torch/Transforms/Passes.h"
|
|
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include <cstdint>
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::torch;
|
|
using namespace mlir::torch::Torch;
|
|
|
|
// Helper function to check whether the `dtype` is None or Float type.
|
|
static bool isNoneOrFloatDtype(MLIRContext *context, Value dtype) {
|
|
if (dtype.getType().isa<Torch::NoneType>())
|
|
return true;
|
|
int64_t dtypeInt;
|
|
if (!matchPattern(dtype, m_TorchConstantInt(&dtypeInt)))
|
|
return false;
|
|
Type resDtype =
|
|
getTypeForScalarType(context, (torch_upstream::ScalarType)dtypeInt);
|
|
return resDtype.isa<mlir::FloatType>();
|
|
}
|
|
|
|
// Helper function to compute the return type of the reduction function.
|
|
// `dim` specifies the dimension to reduce and `keepDim` preserves the rank of
|
|
// the input tensor.
|
|
static Type computeReductionType(PatternRewriter &rewriter, Operation *op,
|
|
BaseTensorType tensorType, Value dim,
|
|
bool keepDim) {
|
|
SmallVector<int64_t> sizes;
|
|
int64_t dimInt;
|
|
if (tensorType.hasSizes()) {
|
|
ArrayRef<int64_t> inputShape = tensorType.getSizes();
|
|
int64_t inputRank = inputShape.size();
|
|
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
|
|
dimInt = toPositiveDim(dimInt, inputRank);
|
|
if (!isValidDim(dimInt, inputRank)) {
|
|
(void)rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
return nullptr;
|
|
}
|
|
sizes.append(inputShape.begin(), inputShape.end());
|
|
// The dimension to be reduced is set to 1 when `keepDim` is true else it
|
|
// is removed.
|
|
if (keepDim)
|
|
sizes[dimInt] = 1;
|
|
else
|
|
sizes.erase(sizes.begin() + dimInt - 1);
|
|
} else {
|
|
unsigned reducedRank = keepDim ? inputRank : inputRank - 1;
|
|
sizes.resize(reducedRank, kUnknownSize);
|
|
}
|
|
}
|
|
|
|
Type resultType = tensorType.getWithSizesAndDtype(
|
|
sizes.size() == 0 ? Optional<ArrayRef<int64_t>>()
|
|
: llvm::makeArrayRef(sizes),
|
|
tensorType.getDtype());
|
|
return resultType;
|
|
}
|
|
|
|
// Reduction function to calculate sum along given `dim`.
|
|
static Value createSumAlongDimension(PatternRewriter &rewriter, Location loc,
|
|
Operation *op, Value input, Value dim,
|
|
bool keepDim) {
|
|
Value dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(dim.getType()), dim);
|
|
Value keepDimCst = rewriter.create<ConstantBoolOp>(loc, keepDim);
|
|
Value dtype = rewriter.create<ConstantNoneOp>(loc);
|
|
Type resultType = computeReductionType(
|
|
rewriter, op, input.getType().cast<BaseTensorType>(), dim, keepDim);
|
|
if (!resultType)
|
|
return nullptr;
|
|
return rewriter.create<AtenSumDimIntListOp>(loc, resultType, input, dimList,
|
|
keepDimCst, dtype);
|
|
}
|
|
|
|
// Redunction function to calculate max along given `dim`.
|
|
static Value createMaxAlongDimension(PatternRewriter &rewriter, Location loc,
|
|
Operation *op, Value input, Value dim,
|
|
bool keepDim) {
|
|
Value keepDimCst = rewriter.create<ConstantBoolOp>(loc, keepDim);
|
|
BaseTensorType valueType =
|
|
computeReductionType(rewriter, op, input.getType().cast<BaseTensorType>(),
|
|
dim, keepDim)
|
|
.cast<BaseTensorType>();
|
|
if (!valueType)
|
|
return nullptr;
|
|
BaseTensorType indexType =
|
|
valueType
|
|
.getWithSizesAndDtype(
|
|
!valueType.hasSizes() ? Optional<ArrayRef<int64_t>>()
|
|
: llvm::makeArrayRef(valueType.getSizes()),
|
|
IntegerType::get(op->getContext(), 64, IntegerType::Signed))
|
|
.cast<BaseTensorType>();
|
|
return rewriter
|
|
.create<AtenMaxDimOp>(loc, valueType, indexType, input, dim, keepDimCst)
|
|
.values();
|
|
}
|
|
|
|
// Helper for creating `aten::sub_tensor_op`.
|
|
static Value createTensorSub(PatternRewriter &rewriter, Location loc,
|
|
Type tensorType, Value lhs, Value rhs) {
|
|
Value alpha =
|
|
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1));
|
|
Value sub =
|
|
rewriter.create<AtenSubTensorOp>(loc, tensorType, lhs, rhs, alpha);
|
|
return sub;
|
|
}
|
|
|
|
// Helper to create a tensor filled with the given scalar. Scalar would be
|
|
// converted the to the element type of the given tensor type.
|
|
static Value createInitTensor(PatternRewriter &rewriter, Location loc,
|
|
Type resultType, Value scalar, Value sizeList) {
|
|
BaseTensorType tensorType = resultType.cast<BaseTensorType>();
|
|
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
|
|
Value emptyTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
|
|
loc, tensorType, sizeList, /*dtype=*/noneVal, /*layout=*/noneVal,
|
|
/*device=*/noneVal, /*pin_memory=*/noneVal, /*memory_format=*/noneVal);
|
|
return rewriter.create<ValsemVariantAtenFillScalarOp>(loc, resultType,
|
|
emptyTensor, scalar);
|
|
}
|
|
|
|
// Helper to create a rank 0 tensor filled with the given `scalar`. `scalar`
|
|
// would be converted to the element type of the given `inputType`.
|
|
static Value createRank0Tensor(PatternRewriter &rewriter, Location loc,
|
|
BaseTensorType inputType, Value scalar) {
|
|
SmallVector<int64_t> sizes;
|
|
Type rank0TensorTy = inputType.getWithSizesAndDtype(
|
|
makeArrayRef(sizes), inputType.getOptionalDtype());
|
|
Value dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(inputType.getContext())),
|
|
ValueRange{});
|
|
return createInitTensor(rewriter, loc, rank0TensorTy, scalar, dimList);
|
|
}
|
|
|
|
// Share code between `softmax_backward` and `log_softmax_backward` ops.
|
|
// Returns x - y * sum(z, dim).
|
|
static Value createSoftmaxBackwardCommonKernel(PatternRewriter &rewriter,
|
|
Location loc, Operation *op,
|
|
Type tensorType, Value x,
|
|
Value y, Value z, Value dim) {
|
|
Value sum =
|
|
createSumAlongDimension(rewriter, loc, op, z, dim, /*keepDim=*/true);
|
|
if (!sum)
|
|
return nullptr;
|
|
auto broadcastSizeType =
|
|
Torch::ListType::get(Torch::IntType::get(op->getContext()));
|
|
Value broadcastSize = rewriter.create<AtenSizeOp>(loc, broadcastSizeType, z);
|
|
Value sumBroadcast =
|
|
rewriter.create<AtenBroadcastToOp>(loc, tensorType, sum, broadcastSize);
|
|
Value temp =
|
|
rewriter.create<AtenMulTensorOp>(loc, tensorType, y, sumBroadcast);
|
|
|
|
Value sub = createTensorSub(rewriter, loc, tensorType, x, temp);
|
|
return sub;
|
|
}
|
|
|
|
namespace {
|
|
class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSizeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
MLIRContext *context = op.getContext();
|
|
int64_t rank = getTensorRank(self);
|
|
if (rank < 0)
|
|
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
|
|
SmallVector<Value> sizes;
|
|
for (int i = 0; i < rank; i++) {
|
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
sizes.push_back(rewriter.create<AtenSizeIntOp>(loc, self, dim));
|
|
}
|
|
|
|
Value sizeList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(context)), sizes);
|
|
rewriter.replaceOp(op, sizeList);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenSelectIntOp : public OpRewritePattern<AtenSelectIntOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSelectIntOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value start = op.index();
|
|
Value dim = op.dim();
|
|
Value self = op.self();
|
|
|
|
Value one =
|
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
|
Value startPlusOne =
|
|
rewriter.create<AtenAddIntOp>(loc, one.getType(), start, one);
|
|
Value slice = rewriter.create<AtenSliceTensorOp>(
|
|
loc,
|
|
computeReductionType(rewriter, op,
|
|
self.getType().cast<BaseTensorType>(), dim,
|
|
/*keepDim=*/true),
|
|
op.self(), dim, start, startPlusOne, /*step=*/one);
|
|
|
|
// `aten.slice.tensor` doesn't squeeze the dim even when it's size 1 after
|
|
// slicing, while `aten.select.int` does.
|
|
rewriter.replaceOpWithNewOp<AtenSqueezeDimOp>(op, op.getResult().getType(),
|
|
slice, op.dim());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenZeroOp : public OpRewritePattern<AtenZeroOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenZeroOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value zero = rewriter.create<ConstantIntOp>(op.getLoc(),
|
|
rewriter.getI64IntegerAttr(0));
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenFillScalarOp>(op, op.getType(),
|
|
op.self(), zero);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenReshapeOp : public OpRewritePattern<AtenReshapeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenReshapeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value input = op.self();
|
|
// TODO: Handle non value tensor type operands.
|
|
if (!input.getType().isa<ValueTensorType>()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: only value tensor type operands are supported");
|
|
}
|
|
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), input,
|
|
op.shape());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Calculates the softmax function on the given `input` tensor. Softmax(x) =
|
|
// exp(x)/sum(exp(x)).
|
|
// To avoid overflow we use the following decomposition rule:
|
|
// x_max = max(input, dim, keepdim = True)
|
|
// unnorm = aten.exp(input - x_max)
|
|
// softmax = unnorm / sum(unnorm, dim, keepdim = True)
|
|
template <typename OpTy>
|
|
static Value getSoftmaxResult(OpTy op, Type resultType,
|
|
PatternRewriter &rewriter) {
|
|
Location loc = op.getLoc();
|
|
Value dim = op.dim();
|
|
Value self = op.self();
|
|
Value xMax =
|
|
createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true);
|
|
if (!xMax)
|
|
return nullptr;
|
|
Value unNormalized = createTensorSub(rewriter, loc, resultType, self, xMax);
|
|
Value unNormalizedExp =
|
|
rewriter.create<AtenExpOp>(loc, resultType, unNormalized);
|
|
Value sum = createSumAlongDimension(rewriter, loc, op, unNormalizedExp, dim,
|
|
/*keepDim=*/true);
|
|
if (!sum)
|
|
return nullptr;
|
|
return rewriter.create<AtenDivTensorOp>(loc, resultType, unNormalizedExp,
|
|
sum);
|
|
}
|
|
|
|
// Decompose softmax into: exp(x) / sum(exp(x))
|
|
namespace {
|
|
class DecomposeAtenSoftmaxIntOp : public OpRewritePattern<AtenSoftmaxIntOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSoftmaxIntOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
if (!op.dtype().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Unimplemented non-None dtype for softmax");
|
|
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value result = getSoftmaxResult(op, tensorType, rewriter);
|
|
if (!result)
|
|
return failure();
|
|
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
|
|
result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAten_SoftmaxOp : public OpRewritePattern<Aten_SoftmaxOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_SoftmaxOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
bool halfToFloat;
|
|
if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Expected a boolean value for half_to_float");
|
|
|
|
// Currently, setting `halfToFloat` is not supported as the E2E testing for
|
|
// the same is not present on CPU.
|
|
if (halfToFloat)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "halfToFloat is currently not supported.");
|
|
|
|
Value result = getSoftmaxResult(op, tensorType, rewriter);
|
|
if (!result)
|
|
return op.emitError("failed to get softmax result");
|
|
rewriter.replaceOpWithNewOp<TensorStaticInfoCastOp>(op, op.getType(),
|
|
result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Aten_SoftmaxBackwardDataOp(gradOutput, output, dim) =>
|
|
// newGrad = gradOutput * output
|
|
// result = newGrad - output * sum(newGrad, dim))
|
|
//
|
|
// Refer to
|
|
// https://github.com/pytorch/pytorch/blob/15fecc4c830a3907fde4b44c9962dc4144da50a4/torch/csrc/jit/codegen/cuda/ops/normalization.cpp#L31
|
|
namespace {
|
|
class DecomposeAten_SoftmaxBackwardDataOp
|
|
: public OpRewritePattern<Aten_SoftmaxBackwardDataOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_SoftmaxBackwardDataOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value gradOutput = op.grad_output();
|
|
Value output = op.output();
|
|
Value dim = op.dim();
|
|
|
|
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value newGrad =
|
|
rewriter.create<AtenMulTensorOp>(loc, tensorType, gradOutput, output);
|
|
Value result = createSoftmaxBackwardCommonKernel(
|
|
rewriter, loc, op, tensorType, newGrad, output, newGrad, dim);
|
|
if (!result)
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// AtenTanhBackwardOp(gradOutput, output) =>
|
|
// result = gradOutput * (1 - output^2)
|
|
// To get away from broadcasts the above formula is expanded i.e.,
|
|
// result = gradOutput - (gradOutput * output^2)
|
|
namespace {
|
|
class DecomposeAtenTanhBackwardOp
|
|
: public OpRewritePattern<AtenTanhBackwardOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenTanhBackwardOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value gradOutput = op.grad_output();
|
|
|
|
// `output` is the value flowing out from tanh. Hence, tanh(x) = output.
|
|
// Since, dTanh(x) = (1 - tanh(x)^2) hence, dOutput = (1 - output^2).
|
|
Value output = op.output();
|
|
|
|
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value tanhSquare =
|
|
rewriter.create<AtenMulTensorOp>(loc, tensorType, output, output);
|
|
Value gradMulTanhSquare = rewriter.create<AtenMulTensorOp>(
|
|
loc, tensorType, tanhSquare, gradOutput);
|
|
|
|
Value newGrad = createTensorSub(rewriter, loc, tensorType, gradOutput,
|
|
gradMulTanhSquare);
|
|
rewriter.replaceOp(op, newGrad);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Aten_LogSoftmaxBackwardDataOp(gradOutput, output, dim) =>
|
|
// result = gradOutput - (exp(output) * sum(gradOutput, dim))
|
|
namespace {
|
|
class DecomposeAten_LogSoftmaxBackwardDataOp
|
|
: public OpRewritePattern<Aten_LogSoftmaxBackwardDataOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_LogSoftmaxBackwardDataOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value gradOutput = op.grad_output();
|
|
Value output = op.output();
|
|
Value dim = op.dim();
|
|
|
|
BaseTensorType tensorType = gradOutput.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value expOut = rewriter.create<AtenExpOp>(loc, tensorType, output);
|
|
Value result = createSoftmaxBackwardCommonKernel(
|
|
rewriter, loc, op, tensorType, gradOutput, expOut, gradOutput, dim);
|
|
if (!result)
|
|
return rewriter.notifyMatchFailure(
|
|
op,
|
|
"nullptr returned by createSoftmaxBackwardCommonKernel function.");
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose `AtenArgMaxOp` into `AtenMaxDimOp`.
|
|
namespace {
|
|
class DecomposeAtenArgMaxOp : public OpRewritePattern<AtenArgmaxOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenArgmaxOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value dim = op.dim();
|
|
Value keepDim = op.keepdim();
|
|
Value result = op.result();
|
|
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
BaseTensorType indicesTensorType = result.getType().cast<BaseTensorType>();
|
|
|
|
if (!indicesTensorType.hasSizes())
|
|
return failure();
|
|
BaseTensorType valueTensorType =
|
|
inputType
|
|
.getWithSizesAndDtype(indicesTensorType.getSizes(),
|
|
inputType.getDtype())
|
|
.cast<BaseTensorType>();
|
|
|
|
// If the dim type is `NoneType` i.e. reduce along all the dimensions.
|
|
// `AtenMaxDimOp` doesn't support dim as `NoneType` so first the input
|
|
// tensor is flattened to 1d tensor and then the reduction happens on the
|
|
// 0th dimension.
|
|
if (dim.getType().isa<Torch::NoneType>()) {
|
|
BaseTensorType flattenType =
|
|
inputType.getWithSizesAndDtype({kUnknownSize}, inputType.getDtype())
|
|
.cast<BaseTensorType>();
|
|
dim = rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
|
|
Value end = rewriter.create<ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(getTensorRank(input) - 1));
|
|
input = rewriter.create<AtenFlattenUsingIntsOp>(loc, flattenType, input,
|
|
dim, end);
|
|
}
|
|
Value maxResult =
|
|
rewriter
|
|
.create<AtenMaxDimOp>(loc, valueTensorType, indicesTensorType,
|
|
input, dim, keepDim)
|
|
.indices();
|
|
|
|
rewriter.replaceOp(op, maxResult);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// To avoid overflow we use the following decomposition rule:
|
|
// x_max = aten.max(x, dim, keepdim=True)[0]
|
|
// shifted = x - x_max
|
|
// shifted_logsumexp = aten.log(aten.sum(aten.exp(shifted), dim, keepdim=True))
|
|
// log_softmax = shifted - shifted_logsumexp
|
|
template <typename OpTy>
|
|
static Value getLogSoftmaxResult(OpTy op, PatternRewriter &rewriter) {
|
|
Location loc = op.getLoc();
|
|
Value dim = op.dim();
|
|
Value self = op.self();
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
Value xMax =
|
|
createMaxAlongDimension(rewriter, loc, op, self, dim, /*keepDim=*/true);
|
|
if (!xMax)
|
|
return nullptr;
|
|
|
|
Value shifted = createTensorSub(rewriter, loc, tensorType, self, xMax);
|
|
Value shiftedExp = rewriter.create<AtenExpOp>(loc, tensorType, shifted);
|
|
Value shiftedSumExp =
|
|
createSumAlongDimension(rewriter, loc, op, shiftedExp, dim,
|
|
/*keepDim=*/true);
|
|
if (!shiftedSumExp)
|
|
return nullptr;
|
|
|
|
Value shiftedLogSumExp =
|
|
rewriter.create<AtenLogOp>(loc, shiftedSumExp.getType(), shiftedSumExp);
|
|
Value result =
|
|
createTensorSub(rewriter, loc, op.getType(), shifted, shiftedLogSumExp);
|
|
return result;
|
|
}
|
|
|
|
namespace {
|
|
class DecomposeAtenLogSoftmaxIntOp
|
|
: public OpRewritePattern<AtenLogSoftmaxIntOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenLogSoftmaxIntOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
if (!op.dtype().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Unimplemented non-None dtype for log_softmax");
|
|
|
|
BaseTensorType tensorType = self.getType().cast<BaseTensorType>();
|
|
if (!tensorType.hasDtype() || !tensorType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(op, "Only support floating type");
|
|
|
|
Value logSoftmax = getLogSoftmaxResult(op, rewriter);
|
|
if (!logSoftmax)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "getLogSoftmaxResult function returned nullptr");
|
|
rewriter.replaceOp(op, logSoftmax);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAten_LogSoftmaxOp : public OpRewritePattern<Aten_LogSoftmaxOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_LogSoftmaxOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
bool halfToFloat;
|
|
if (!matchPattern(op.half_to_float(), m_TorchConstantBool(&halfToFloat)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Expected a boolean value for half_to_float");
|
|
|
|
// Currently, setting `halfToFloat` is not supported as the E2E testing for
|
|
// the same is not present on CPU.
|
|
if (halfToFloat)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "halfToFloat is currently not supported.");
|
|
Value _logSoftmax = getLogSoftmaxResult(op, rewriter);
|
|
if (!_logSoftmax)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "getLogSoftmaxResult function returned nullptr");
|
|
rewriter.replaceOp(op, _logSoftmax);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.matmul into: aten.mm and aten.bmm according to ranks.
|
|
namespace {
|
|
class DecomposeAtenMatmulOp : public OpRewritePattern<AtenMatmulOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenMatmulOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value lhs = op.self();
|
|
Value rhs = op.other();
|
|
|
|
int lhsRank = getTensorRank(lhs);
|
|
int rhsRank = getTensorRank(rhs);
|
|
|
|
// If both lhs and rhs ranks are 2 then map it to `aten.mm` op.
|
|
if (lhsRank == 2 && rhsRank == 2)
|
|
rewriter.replaceOpWithNewOp<AtenMmOp>(op, op.getType(), lhs, rhs);
|
|
|
|
// If both lhs and rhs ranks are 3 then map it to `aten.bmm` op.
|
|
if (lhsRank == 3 && rhsRank == 3)
|
|
rewriter.replaceOpWithNewOp<AtenBmmOp>(op, op.getType(), lhs, rhs);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// ReLU6(x) = min(max(0, x), 6) = min(Relu(x), 6)
|
|
static Value getRelu6Results(PatternRewriter &rewriter, Location loc,
|
|
Value input) {
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
|
|
Value relu = rewriter.create<AtenReluOp>(loc, inputType, input);
|
|
Value cst6 =
|
|
rewriter.create<Torch::ConstantIntOp>(loc, rewriter.getI64IntegerAttr(6));
|
|
Value sixTensor = createRank0Tensor(rewriter, loc, inputType, cst6);
|
|
Value relu6Out =
|
|
rewriter.create<AtenMinimumOp>(loc, inputType, relu, sixTensor);
|
|
return relu6Out;
|
|
}
|
|
|
|
// Hardswish(x) = x * Relu6(x+3)/6
|
|
namespace {
|
|
class DecomposeAtenHardswishOp : public OpRewritePattern<AtenHardswishOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenHardswishOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Type inputType = input.getType();
|
|
|
|
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
Value constantThree = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(3));
|
|
Value constantSix = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(6));
|
|
Value inputPlusThree = rewriter.create<AtenAddScalarOp>(
|
|
loc, inputType, input, constantThree, /*alpha=*/constantOne);
|
|
Value relu6 = getRelu6Results(rewriter, loc, inputPlusThree);
|
|
Value divTensor =
|
|
rewriter.create<AtenDivScalarOp>(loc, inputType, relu6, constantSix);
|
|
Value mulTensor =
|
|
rewriter.create<AtenMulTensorOp>(loc, inputType, divTensor, input);
|
|
|
|
rewriter.replaceOp(op, mulTensor);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenTOp : public OpRewritePattern<AtenTOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenTOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value lhs = op.self();
|
|
int lhsRank = getTensorRank(lhs);
|
|
auto loc = op.getLoc();
|
|
|
|
if (lhsRank > 2 || lhsRank < 0) {
|
|
std::string errorMessage =
|
|
"t() expects a tensor with <=2 dimensions, but self is " +
|
|
std::to_string(lhsRank) + "D";
|
|
return rewriter.notifyMatchFailure(op, errorMessage.c_str());
|
|
} else if (lhsRank < 2)
|
|
rewriter.replaceOp(op, lhs);
|
|
else {
|
|
Value zero =
|
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
|
|
Value one =
|
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
|
rewriter.replaceOpWithNewOp<AtenTransposeIntOp>(op, op.getType(), lhs,
|
|
zero, one);
|
|
}
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.repeat into aten.expand and aten.view ops.
|
|
//
|
|
// Ref: https://pytorch.org/docs/stable/generated/torch.Tensor.repeat.html
|
|
//
|
|
// For shape [S1, S2, S3] and repeats [M0, M1, M2, M3]
|
|
// MS0 = M0; MS1 = M1 * S1; MS2 = M2 * S2; MS3 = M3 * S3
|
|
//
|
|
// def aten_repeat(self, repeats):
|
|
// sizes = self.size()
|
|
// unsqueezed_sizes = []
|
|
// expanded_sizes = []
|
|
// reshape_sizes = []
|
|
// leading_rank = repeats.size() - sizes.size()
|
|
// for r in range(leading_rank):
|
|
// unsqueezed_sizes.append(1)
|
|
// expanded_sizes.append(repeats[r])
|
|
// reshaped_sizes.append(repeats[r])
|
|
//
|
|
// for s, m in zip(sizes, repeats[leading_rank:]):
|
|
// unsqueezed_sizes += [1, s]
|
|
// expanded_sizes += [m, s]
|
|
// reshaped_sizes += [m * s]
|
|
// return
|
|
// self.view(unsqueezed_sizes).expand(expanded_sizes).view(reshaped_sizes)
|
|
//
|
|
namespace {
|
|
class DecomposeAtenRepeatOp : public OpRewritePattern<AtenRepeatOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenRepeatOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
MLIRContext *context = op.getContext();
|
|
int rank = getTensorRank(self);
|
|
if (rank < 0)
|
|
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
|
|
|
|
SmallVector<Value> repeats;
|
|
if (!getListConstructElements(op.repeats(), repeats))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Unimplemented: repeats not list of Scalar");
|
|
|
|
if (rank > (int)repeats.size()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "repeats are not matched with self's rank");
|
|
}
|
|
|
|
auto insertDimSizes = [](SmallVector<Value> &dimSizes,
|
|
SmallVector<int64_t> &shape,
|
|
const ArrayRef<Value> &vals) {
|
|
dimSizes.insert(dimSizes.end(), vals.begin(), vals.end());
|
|
std::transform(vals.begin(), vals.end(), std::back_inserter(shape),
|
|
[&](Value val) -> int64_t {
|
|
int64_t cst_val;
|
|
if (matchPattern(val, m_TorchConstantInt(&cst_val))) {
|
|
return cst_val;
|
|
} else {
|
|
return ShapedType::kDynamicSize;
|
|
}
|
|
});
|
|
};
|
|
|
|
Value one = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
|
|
SmallVector<Value> unsqueezedSizes, expandedSizes, reshapedSizes;
|
|
SmallVector<int64_t> unsqueezedIntSizes, expandedIntSizes;
|
|
auto leadingRank = repeats.size() - rank;
|
|
assert(leadingRank >= 0 && "leadingRank should greater than 0");
|
|
for (size_t i = 0; i < leadingRank; ++i) {
|
|
insertDimSizes(unsqueezedSizes, unsqueezedIntSizes, ArrayRef<Value>{one});
|
|
insertDimSizes(expandedSizes, expandedIntSizes,
|
|
ArrayRef<Value>{repeats[i]});
|
|
reshapedSizes.push_back(repeats[i]);
|
|
}
|
|
|
|
auto selfType = self.getType().dyn_cast<BaseTensorType>();
|
|
auto selfShape = selfType.getSizes();
|
|
for (int i = 0; i < rank; i++) {
|
|
auto scale = repeats[i + leadingRank];
|
|
Value dimSize;
|
|
if (selfShape[i] == ShapedType::kDynamicSize) {
|
|
Value dim = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i));
|
|
dimSize = rewriter.create<AtenSizeIntOp>(loc, self, dim);
|
|
} else {
|
|
dimSize = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(selfShape[i]));
|
|
}
|
|
|
|
insertDimSizes(unsqueezedSizes, unsqueezedIntSizes,
|
|
ArrayRef<Value>{one, dimSize});
|
|
insertDimSizes(expandedSizes, expandedIntSizes,
|
|
ArrayRef<Value>{scale, dimSize});
|
|
|
|
Value scaledSize = rewriter.create<AtenMulIntOp>(loc, dimSize, scale);
|
|
reshapedSizes.push_back(scaledSize);
|
|
}
|
|
|
|
Type dtype = self.getType().cast<ValueTensorType>().getDtype();
|
|
Type unsqueezedType = ValueTensorType::get(
|
|
context, llvm::makeArrayRef(unsqueezedIntSizes), dtype);
|
|
Type expandedType = ValueTensorType::get(
|
|
context, llvm::makeArrayRef(expandedIntSizes), dtype);
|
|
|
|
auto listType = Torch::ListType::get(Torch::IntType::get(op.getContext()));
|
|
Value unsqueezedDims =
|
|
rewriter.create<PrimListConstructOp>(loc, listType, unsqueezedSizes);
|
|
Value expandedDims =
|
|
rewriter.create<PrimListConstructOp>(loc, listType, expandedSizes);
|
|
Value reshapedDims =
|
|
rewriter.create<PrimListConstructOp>(loc, listType, reshapedSizes);
|
|
auto reshaped = rewriter.create<AtenViewOp>(loc, unsqueezedType, op.self(),
|
|
unsqueezedDims);
|
|
auto expanded = rewriter.create<AtenBroadcastToOp>(loc, expandedType,
|
|
reshaped, expandedDims);
|
|
|
|
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), expanded,
|
|
reshapedDims);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.expand into aten.broadcast_to op.
|
|
namespace {
|
|
class DecomposeAtenExpandOp : public OpRewritePattern<AtenExpandOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenExpandOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
bool implicit = false;
|
|
if (!matchPattern(op.implicit(), m_TorchConstantBool(&implicit)) ||
|
|
implicit) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: requires implicit to be false");
|
|
}
|
|
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), op.self(),
|
|
op.size());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.where.Scalar into aten.where.self op.
|
|
namespace {
|
|
class DecomposeAtenWhereScalarOp : public OpRewritePattern<AtenWhereScalarOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenWhereScalarOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
auto resType = op.getType().cast<BaseTensorType>();
|
|
Value selfTensor = createRank0Tensor(rewriter, loc, resType, op.self());
|
|
Value otherTensor = createRank0Tensor(rewriter, loc, resType, op.other());
|
|
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, resType, op.condition(),
|
|
selfTensor, otherTensor);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.where.ScalarOther into aten.where.self op.
|
|
namespace {
|
|
class DecomposeAtenWhereScalarOtherOp
|
|
: public OpRewritePattern<AtenWhereScalarOtherOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenWhereScalarOtherOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
auto resType = op.getType().cast<BaseTensorType>();
|
|
Value otherTensor = createRank0Tensor(rewriter, loc, resType, op.other());
|
|
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, resType, op.condition(),
|
|
op.self(), otherTensor);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.where.ScalarSelf into aten.where.self op.
|
|
namespace {
|
|
class DecomposeAtenWhereScalarSelfOp
|
|
: public OpRewritePattern<AtenWhereScalarSelfOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenWhereScalarSelfOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
auto resType = op.getType().cast<BaseTensorType>();
|
|
Value selfTensor = createRank0Tensor(rewriter, loc, resType, op.self());
|
|
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, resType, op.condition(),
|
|
selfTensor, op.other());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.convolution_overrideable to aten.convolution
|
|
namespace {
|
|
class DecomposeAtenConvolutionOverrideableOp
|
|
: public OpRewritePattern<AtenConvolutionOverrideableOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenConvolutionOverrideableOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
rewriter.replaceOpWithNewOp<AtenConvolutionOp>(
|
|
op, op->getResultTypes(), op.input(), op.weight(), op.bias(),
|
|
op.stride(), op.padding(), op.dilation(), op.transposed(),
|
|
op.output_padding(), op.groups());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.convolution_overrideable to aten.convolution
|
|
namespace {
|
|
class DecomposeAten_ConvolutionOp
|
|
: public OpRewritePattern<Aten_ConvolutionOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_ConvolutionOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
rewriter.replaceOpWithNewOp<AtenConvolutionOp>(
|
|
op, op->getResultTypes(), op.input(), op.weight(), op.bias(),
|
|
op.stride(), op.padding(), op.dilation(), op.transposed(),
|
|
op.output_padding(), op.groups());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.conv2d to aten.convolution
|
|
namespace {
|
|
class DecomposeAtenConv2dOp : public OpRewritePattern<AtenConv2dOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenConv2dOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value emptyList = rewriter.create<PrimListConstructOp>(
|
|
op.getLoc(), Torch::ListType::get(Torch::IntType::get(op.getContext())),
|
|
SmallVector<Value>());
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
|
|
rewriter.replaceOpWithNewOp<AtenConvolutionOp>(
|
|
op, op->getResultTypes(), op.input(), op.weight(), op.bias(),
|
|
op.stride(), op.padding(), op.dilation(), cstFalse, emptyList,
|
|
op.groups());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.addmm into aten.mm and aten.add.Tensor op.
|
|
namespace {
|
|
class DecomposeAtenAddmmOp : public OpRewritePattern<AtenAddmmOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenAddmmOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value mat1 = op.mat1();
|
|
Value mat2 = op.mat2();
|
|
|
|
// The operands `mat1`, `mat2` to aten.addmm must be of rank 2.
|
|
if (getTensorRank(mat1) != 2 || getTensorRank(mat2) != 2) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expected mat1, mat2 operands to aten.addmm to be rank 2");
|
|
}
|
|
|
|
// TODO: Handle integer type operands.
|
|
if (!input.getType()
|
|
.cast<ValueTensorType>()
|
|
.getDtype()
|
|
.isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: non-floating point dtype");
|
|
}
|
|
|
|
// matrix multiplication: matmul = mat1 @ mat2
|
|
Value matmul = rewriter.create<AtenMmOp>(loc, op.getType(), mat1, mat2);
|
|
// scaledInput = self * beta
|
|
Value scaledInput = rewriter.create<AtenMulScalarOp>(loc, input.getType(),
|
|
input, op.beta());
|
|
// result = scaledInput + alpha * matmul
|
|
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), scaledInput,
|
|
matmul, op.alpha());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.mean into: sum(x)/div(numTensorElements).
|
|
namespace {
|
|
class DecomposeAtenMeanOp : public OpRewritePattern<AtenMeanOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenMeanOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value output = op.result();
|
|
BaseTensorType outputTensorType = output.getType().cast<BaseTensorType>();
|
|
Value sum =
|
|
rewriter.create<AtenSumOp>(loc, outputTensorType, input, op.dtype());
|
|
Value numTensorElements = rewriter.create<AtenNumelOp>(loc, input);
|
|
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, outputTensorType, sum,
|
|
numTensorElements);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// productDimSize = product(size(dim) for dim in dims)
|
|
// aten.mean(x, dims) = aten.sum(x, dims) / productDimSize.
|
|
namespace {
|
|
class DecomposeAtenMeanDimOp : public OpRewritePattern<AtenMeanDimOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenMeanDimOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
unsigned inputRank = getTensorRank(input);
|
|
Value dimList = op.dim();
|
|
Value keepDim = op.keepdim();
|
|
Value dtype = op.dtype();
|
|
Type outputType = op.getType();
|
|
MLIRContext *context = op.getContext();
|
|
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>() ||
|
|
!isNoneOrFloatDtype(context, dtype)) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only floating-point type is supported");
|
|
}
|
|
|
|
auto dimListConstruct = dimList.getDefiningOp<PrimListConstructOp>();
|
|
if (!dimListConstruct) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expect dimList to be constructed from list construct");
|
|
}
|
|
|
|
// Compute sum along dimensions specified in `dimList`.
|
|
Value sumAlongDims = rewriter.create<AtenSumDimIntListOp>(
|
|
loc, outputType, input, dimList, keepDim, dtype);
|
|
|
|
// `productDimSize` is product of sizes of dimensions to be reduced.
|
|
Value productDimSize;
|
|
// Case: Reduce along all dims.
|
|
if (dimListConstruct.elements().empty() && inputRank != 0) {
|
|
productDimSize = rewriter.create<AtenNumelOp>(loc, input);
|
|
} else {
|
|
productDimSize = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
for (Value dim : dimListConstruct.elements()) {
|
|
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, input, dim);
|
|
productDimSize =
|
|
rewriter.create<AtenMulIntOp>(loc, productDimSize, dimSize);
|
|
}
|
|
}
|
|
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, outputType, sumAlongDims,
|
|
productDimSize);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenSquareOp : public OpRewritePattern<AtenSquareOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSquareOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
rewriter.replaceOpWithNewOp<AtenMulTensorOp>(op, op.getType(), self, self);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Silu(x) = sigmoid(x) * x
|
|
namespace {
|
|
class DecomposeAtenSiluOp : public OpRewritePattern<AtenSiluOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSiluOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
Value sigmoid =
|
|
rewriter.create<AtenSigmoidOp>(op.getLoc(), op.getType(), self);
|
|
rewriter.replaceOpWithNewOp<AtenMulTensorOp>(op, op.getType(), sigmoid,
|
|
self);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// pDash = 1.0 - p
|
|
// boolMask = aten.rand_like(input) < pDash
|
|
// dropout(input, p, train=True) = (boolMask * input) / pDash
|
|
// dropout(input, p, train=False) = input
|
|
namespace {
|
|
class DecomposeAtenDropoutOp : public OpRewritePattern<AtenDropoutOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenDropoutOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.input();
|
|
Value prob = op.p();
|
|
bool train = false;
|
|
if (!matchPattern(op.train(), m_TorchConstantBool(&train)))
|
|
return rewriter.notifyMatchFailure(op,
|
|
"train must be a boolean constant");
|
|
if (!train) {
|
|
rewriter.replaceOp(op, input);
|
|
return success();
|
|
}
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "only support floating type input for training mode");
|
|
Value noneVal = rewriter.create<ConstantNoneOp>(loc);
|
|
Value floatOne =
|
|
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
|
|
Value oneMinusP = rewriter.create<AtenSubFloatOp>(loc, floatOne, prob);
|
|
Value boolMask = rewriter.create<ValsemVariantAtenBernoulliFloatOp>(
|
|
loc, inputType, input, oneMinusP, /*generator=*/noneVal);
|
|
Value maskedInput =
|
|
rewriter.create<AtenMulTensorOp>(loc, inputType, boolMask, input);
|
|
rewriter.replaceOpWithNewOp<AtenDivScalarOp>(op, op.getType(), maskedInput,
|
|
oneMinusP);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.var into: aten.var.dim op.
|
|
namespace {
|
|
class DecomposeAtenVarOp : public OpRewritePattern<AtenVarOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenVarOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
unsigned inputRank = getTensorRank(self);
|
|
BaseTensorType rank0FloatTensorTy = op.getType().cast<BaseTensorType>();
|
|
if (!rank0FloatTensorTy.hasSizes() ||
|
|
rank0FloatTensorTy.getSizes().size() != 0) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expected aten.var to have a rank 0 tensor type");
|
|
}
|
|
|
|
SmallVector<Value> dims;
|
|
for (unsigned i = 0; i < inputRank; i++)
|
|
dims.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i)));
|
|
Value dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())), dims);
|
|
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
|
|
rewriter.replaceOpWithNewOp<AtenVarDimOp>(op, rank0FloatTensorTy, self,
|
|
dimList, op.unbiased(),
|
|
/*keepdim=*/cstFalse);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.std to sqrt(var(x))
|
|
namespace {
|
|
class DecomposeAtenStdOp : public OpRewritePattern<AtenStdOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenStdOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value self = op.self();
|
|
BaseTensorType inputTensorTy = self.getType().cast<BaseTensorType>();
|
|
if (!inputTensorTy.hasDtype() ||
|
|
!inputTensorTy.getDtype().isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"Only aten.std support floating type");
|
|
}
|
|
Value var = rewriter.create<AtenVarOp>(op->getLoc(), op.getType(),
|
|
op.self(), op.unbiased());
|
|
rewriter.replaceOpWithNewOp<AtenSqrtOp>(op, op.getType(), var);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Softplus(x, beta, threshold) =
|
|
// x * beta > threshold ? x : log(1 + exp(x * beta)) / beta
|
|
namespace {
|
|
class DecomposeAtenSoftplusOp : public OpRewritePattern<AtenSoftplusOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSoftplusOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
|
|
Value inputTimesBeta =
|
|
rewriter.create<AtenMulScalarOp>(loc, inputType, input, op.beta());
|
|
|
|
// out = log1p(exp(input * beta)) / beta
|
|
Value exp = rewriter.create<AtenExpOp>(loc, inputType, inputTimesBeta);
|
|
Value log1p = rewriter.create<AtenLog1pOp>(loc, inputType, exp);
|
|
Value out =
|
|
rewriter.create<AtenDivScalarOp>(loc, inputType, log1p, op.beta());
|
|
|
|
// Select where x * beta > threshold
|
|
auto boolResType = inputType.getWithSizesAndDtype(inputType.getSizes(),
|
|
rewriter.getI1Type());
|
|
Value condition = rewriter.create<AtenGtScalarOp>(
|
|
loc, boolResType, inputTimesBeta, op.threshold());
|
|
|
|
rewriter.replaceOpWithNewOp<AtenWhereSelfOp>(op, op.getType(), condition,
|
|
input, out);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Hardsigmoid(x) = max(0, min(1, (x+3)/6))
|
|
namespace {
|
|
class DecomposeAtenHardsigmoidOp : public OpRewritePattern<AtenHardsigmoidOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenHardsigmoidOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
|
|
// outputTensor = (input + 3) / 6.
|
|
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
Value constantThree = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(3));
|
|
Value constantSix = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(6));
|
|
Value inputPlusThree = rewriter.create<AtenAddScalarOp>(
|
|
loc, inputType, input, constantThree, /*alpha=*/constantOne);
|
|
Value outputTensor = rewriter.create<AtenDivScalarOp>(
|
|
loc, inputType, inputPlusThree, constantSix);
|
|
|
|
// result = max(0, min(1, (input+3)/6))
|
|
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
Value oneTensor = createRank0Tensor(rewriter, loc, inputType, constantOne);
|
|
Value minResult =
|
|
rewriter.create<AtenMinimumOp>(loc, inputType, oneTensor, outputTensor);
|
|
Value zeroTensor =
|
|
createRank0Tensor(rewriter, loc, inputType, constantZero);
|
|
rewriter.replaceOpWithNewOp<AtenMaximumOp>(op, op.getType(), zeroTensor,
|
|
minResult);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenHardtanhOp : public OpRewritePattern<AtenHardtanhOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenHardtanhOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
|
|
// result = min(maxVal, max(minVal, x))
|
|
Value minVal = createRank0Tensor(rewriter, loc, inputType, op.min_val());
|
|
Value maxResult =
|
|
rewriter.create<AtenMaximumOp>(loc, inputType, input, minVal);
|
|
Value maxVal = createRank0Tensor(rewriter, loc, inputType, op.max_val());
|
|
rewriter.replaceOpWithNewOp<AtenMinimumOp>(op, op.getType(), maxVal,
|
|
maxResult);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenRandLikeOp : public OpRewritePattern<AtenRandLikeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenRandLikeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Type resultType = op.getType();
|
|
auto inputType = input.getType().cast<BaseTensorType>();
|
|
if (!inputType.hasDtype() || !inputType.getDtype().isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(op,
|
|
"only support floating-point type");
|
|
}
|
|
|
|
// Create a uniform random op with low and high set to 0.0 and 1.0,
|
|
// respectively.
|
|
Value none = rewriter.create<ConstantNoneOp>(loc);
|
|
Value zero =
|
|
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(0.0));
|
|
Value one =
|
|
rewriter.create<ConstantFloatOp>(loc, rewriter.getF64FloatAttr(1.0));
|
|
Value emptyTensor = rewriter.create<AtenEmptyLikeOp>(
|
|
loc, resultType, input, op.dtype(), op.layout(), op.device(),
|
|
op.pin_memory(), op.memory_format());
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenUniformOp>(
|
|
op, resultType, emptyTensor, /*from=*/zero, /*to=*/one,
|
|
/*generator=*/none);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Bernoulli(x, p) = (rand_like(float(x)) < p).cast(type(x)). Here,
|
|
// 1. p must be a float tensor.
|
|
// 2. The shape of p should be broadcastable to the shape of x.
|
|
// 3. Bernoulli(x, p) returns a tensor of the same type as that of x.
|
|
static LogicalResult decomposeBernoulliLikeOp(PatternRewriter &rewriter,
|
|
Operation *op, Location loc,
|
|
Value input, Value prob,
|
|
Value &output) {
|
|
auto inputType = input.getType().cast<BaseTensorType>();
|
|
auto probType = prob.getType().cast<BaseTensorType>();
|
|
// Both the `input` and `prob` must be ranked tensors.
|
|
if (!inputType.hasSizes() || !inputType.hasDtype() || !probType.hasSizes() ||
|
|
!probType.hasDtype()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "can't decompose bernoulli like ops without sizes or dtype");
|
|
}
|
|
// The `prob` is expected to be a float type tensor.
|
|
if (!probType.getDtype().isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "probabilities must be a float type tensor");
|
|
}
|
|
|
|
// Since the `aten.rand_like` op expects float-type operand, create a
|
|
// float-type tensor with the same shape as that of the `input`.
|
|
Value floatTensor =
|
|
convertTensorToDtype(rewriter, loc, input, rewriter.getF64Type());
|
|
Value none = rewriter.create<ConstantNoneOp>(loc);
|
|
Value randomVal = rewriter.create<AtenRandLikeOp>(
|
|
loc, floatTensor.getType(), floatTensor, /*dtype=*/none, /*layout=*/none,
|
|
/*device=*/none, /*pin_memory=*/none, /*memory_format=*/none);
|
|
|
|
// Bernoulli(x, p) = rand_like(float(x)) < p.
|
|
auto boolResType = inputType.getWithSizesAndDtype(inputType.getSizes(),
|
|
rewriter.getI1Type());
|
|
Value lessThanP =
|
|
rewriter.create<AtenLtTensorOp>(loc, boolResType, randomVal, prob);
|
|
|
|
// As the `output` is expected to be of the `input` type, convert the boolean
|
|
// tensor `lessThanP` to a `input` type tensor.
|
|
output = convertTensorToDtype(rewriter, loc, lessThanP, inputType.getDtype());
|
|
return success();
|
|
}
|
|
|
|
// aten.bernoulli(x) = rand_like(x) < x. Here, the input x is a tensor
|
|
// containing probabilities to be used for drawing the binary random number.
|
|
class DecomposeAtenBernoulliOp : public OpRewritePattern<AtenBernoulliOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenBernoulliOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
if (!op.generator().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "The generator has to ben None because only global default "
|
|
"generator is supported");
|
|
Value output;
|
|
if (failed(
|
|
decomposeBernoulliLikeOp(rewriter, op, loc, input, input, output)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "decomposeBernoulliLikeOp failed to decompose the op");
|
|
rewriter.replaceOp(op, output);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// aten.bernoulli.float(x, p) = (rand_like(float(x)) < tensor(p)).cast(type(x)).
|
|
// Since the input x can be an integer tensor, it's important to cast it to
|
|
// float type before passing it to the `aten.rand_like` op.
|
|
class DecomposeValsemVariantAtenBernoulliFloatOp
|
|
: public OpRewritePattern<ValsemVariantAtenBernoulliFloatOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(ValsemVariantAtenBernoulliFloatOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value p = op.p();
|
|
if (!op.generator().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "The generator has to ben None because only global default "
|
|
"generator is supported");
|
|
|
|
auto inputType = input.getType().cast<BaseTensorType>();
|
|
SmallVector<int64_t> empty;
|
|
Type tensorType = inputType.getWithSizesAndDtype(llvm::makeArrayRef(empty),
|
|
rewriter.getF64Type());
|
|
Value prob = rewriter.create<PrimNumToTensorScalarOp>(loc, tensorType, p);
|
|
Value output;
|
|
if (failed(
|
|
decomposeBernoulliLikeOp(rewriter, op, loc, input, prob, output)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "decomposeBernoulliLikeOp failed to decompose the op");
|
|
rewriter.replaceOp(op, output);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// aten.bernoulli.Tensor(x, p) = (rand_like(float(x)) < p).cast(type(x)).
|
|
// Since the input x can be an integer tensor, it's important to cast it to
|
|
// float type before passing it to the `aten.rand_like` op.
|
|
class DecomposeValsemVariantAtenBernoulliTensorOp
|
|
: public OpRewritePattern<ValsemVariantAtenBernoulliTensorOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(ValsemVariantAtenBernoulliTensorOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value prob = op.p();
|
|
if (!op.generator().getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "The generator has to ben None because only global default "
|
|
"generator is supported");
|
|
Value output;
|
|
if (failed(
|
|
decomposeBernoulliLikeOp(rewriter, op, loc, input, prob, output)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "decomposeBernoulliLikeOp failed to decompose the op");
|
|
rewriter.replaceOp(op, output);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
template <typename OpTy, typename T1T2Op>
|
|
class DecomposeAtenAddCLikeOp : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(OpTy op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value input = op.self();
|
|
Value tensor1 = op.tensor1();
|
|
Value tensor2 = op.tensor2();
|
|
Value value = op.value();
|
|
|
|
Value product =
|
|
rewriter.create<T1T2Op>(loc, op.getType(), tensor1, tensor2);
|
|
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(op, op.getType(), input,
|
|
product, value);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
class DecomposeAtenLayerNormOp : public OpRewritePattern<AtenLayerNormOp> {
|
|
using OpRewritePattern<AtenLayerNormOp>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenLayerNormOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
|
|
auto input = op.input().getType().cast<BaseTensorType>();
|
|
if (!input.hasSizes())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "input tensor should have known sizes.");
|
|
int64_t inputRank = input.getSizes().size();
|
|
Value normalizedShape = op.normalized_shape();
|
|
SmallVector<Value> normalizedShapeSizesTorchInt;
|
|
getListConstructElements(normalizedShape, normalizedShapeSizesTorchInt);
|
|
int64_t axis = inputRank - normalizedShapeSizesTorchInt.size();
|
|
std::vector<int64_t> meanVarSizes(inputRank, 1);
|
|
for (int i = 0; i < axis; i++)
|
|
meanVarSizes[i] = input.getSizes()[i];
|
|
auto meanVarType = input.getWithSizesAndDtype(
|
|
llvm::makeArrayRef(meanVarSizes), input.getDtype());
|
|
auto nativeLayerNorm = rewriter.create<AtenNativeLayerNormOp>(
|
|
loc, op.getType(), meanVarType, meanVarType, op.input(),
|
|
op.normalized_shape(), op.weight(), op.bias(), op.eps());
|
|
rewriter.replaceOp(op, nativeLayerNorm.getResult(0));
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.empty_like` op into `aten.size` and `aten.empty` ops.
|
|
class DecomposeAtenEmptyLikeOp : public OpRewritePattern<AtenEmptyLikeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenEmptyLikeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto sizeListType =
|
|
Torch::ListType::get(Torch::IntType::get(op.getContext()));
|
|
Value sizeList =
|
|
rewriter.create<AtenSizeOp>(op.getLoc(), sizeListType, op.self());
|
|
rewriter.replaceOpWithNewOp<AtenEmptyMemoryFormatOp>(
|
|
op, op.getType(), sizeList, op.dtype(), op.layout(), op.device(),
|
|
op.pin_memory(), op.memory_format());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// The `aten.arange` op is converted to `aten.arange.start_step` op.
|
|
class DecomposeAtenArangeOp : public OpRewritePattern<AtenArangeOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenArangeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
// The AtenArangeOp doesn't have a start and step value. Therefore we set
|
|
// them as default values 0 and 1, respectively.
|
|
Value start, step;
|
|
start = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
step = rewriter.create<Torch::ConstantIntOp>(loc,
|
|
rewriter.getI64IntegerAttr(1));
|
|
rewriter.replaceOpWithNewOp<AtenArangeStartStepOp>(
|
|
op, op.getType(), start, op.end(), step, op.dtype(), op.layout(),
|
|
op.device(), op.pin_memory());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// The `aten.arange.start` op is converted to `aten.arange.start_step` op.
|
|
class DecomposeAtenArangeStartOp : public OpRewritePattern<AtenArangeStartOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenArangeStartOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
// The AtenArangeStartOp doesn't have a step value. Therefore we set it as
|
|
// default value 1.
|
|
Value step;
|
|
step = rewriter.create<Torch::ConstantIntOp>(loc,
|
|
rewriter.getI64IntegerAttr(1));
|
|
rewriter.replaceOpWithNewOp<AtenArangeStartStepOp>(
|
|
op, op.getType(), op.start(), op.end(), step, op.dtype(), op.layout(),
|
|
op.device(), op.pin_memory());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose constant tensor allocation like ops.
|
|
template <typename OpTy, int fillVal>
|
|
class DecomposeConstantTensorAllocLikeOp : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(OpTy op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
// Allocate a memory block.
|
|
Value initTensor = rewriter.create<AtenEmptyLikeOp>(
|
|
loc, op.getType(), op.self(), op.dtype(), op.layout(), op.device(),
|
|
op.pin_memory(), op.memory_format());
|
|
Value constVal = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(fillVal));
|
|
// Initialize the allocated memory block with `fillVal`.
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenFillScalarOp>(
|
|
op, initTensor.getType(), initTensor, constVal);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenNativeBatchNormOp
|
|
: public OpRewritePattern<AtenNativeBatchNormOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenNativeBatchNormOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
MLIRContext *context = op.getContext();
|
|
Value input = op.input();
|
|
Value weight = op.weight();
|
|
Value bias = op.bias();
|
|
Value runningMean = op.running_mean();
|
|
Value runningVar = op.running_var();
|
|
Value eps = op.eps();
|
|
|
|
// TODO: Add support for `training` mode.
|
|
bool training = false;
|
|
if (!matchPattern(op.training(), m_TorchConstantBool(&training)) ||
|
|
training)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: training mode is not supported");
|
|
|
|
// Rank of the input tensor must be greater than or equal to 2. The shape of
|
|
// the `input` is supposed to be (N, C, D?, H?, W?).
|
|
int64_t inputRank = getTensorRank(input);
|
|
if (inputRank < 2)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "input must have rank greater than or equal to 2");
|
|
|
|
// In the inference mode, the `runningMean` and `runningVar` must not be
|
|
// None.
|
|
if (runningMean.getType().isa<Torch::NoneType>() ||
|
|
runningVar.getType().isa<Torch::NoneType>())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "running stats must not be None in inference mode");
|
|
|
|
// Rank of `runningMean` and `runningVar` must be exactly 1.
|
|
if (getTensorRank(runningMean) != 1 || getTensorRank(runningVar) != 1)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expected running_mean and running_var to be rank 1");
|
|
|
|
Value zero =
|
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(0));
|
|
Value one =
|
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
|
Value numFeatures = rewriter.create<AtenSizeIntOp>(loc, input, /*dim=*/one);
|
|
// TODO: Add Runtime Asserts to check the shape of weight, bias,
|
|
// running_mean and running_var to be (numFeatures).
|
|
|
|
// The `runningMean` and `runningVar` must be reshaped to (1, C, 1?, 1?, 1?)
|
|
// to make it broadcast-compatible with (N, C, D?, H?, W?).
|
|
// 1. runningMean = runningMean.view(1, C, 1?, 1?, 1?)
|
|
// 2. runningVar = runningVar.view(1, C, 1?, 1?, 1?)
|
|
SmallVector<Value> runningStatsShape(inputRank, one);
|
|
runningStatsShape[1] = numFeatures;
|
|
Value runningStatsSizeList = rewriter.create<PrimListConstructOp>(
|
|
loc, ListType::get(IntType::get(context)), runningStatsShape);
|
|
|
|
SmallVector<int64_t> runningStatsShapeInt(inputRank, 1);
|
|
runningStatsShapeInt[1] = ShapedType::kDynamicSize;
|
|
Type dtype = input.getType().cast<ValueTensorType>().getDtype();
|
|
Type reshapeType = ValueTensorType::get(
|
|
context, llvm::makeArrayRef(runningStatsShapeInt), dtype);
|
|
|
|
runningMean = rewriter.create<AtenViewOp>(loc, reshapeType, runningMean,
|
|
runningStatsSizeList);
|
|
runningVar = rewriter.create<AtenViewOp>(loc, reshapeType, runningVar,
|
|
runningStatsSizeList);
|
|
|
|
// normalizedInput = (input - runningMean) / (sqrt(runningVar + eps)).
|
|
Value inputSubMean = rewriter.create<AtenSubTensorOp>(
|
|
loc, input.getType(), input, runningMean, /*alpha=*/one);
|
|
Value varEps = rewriter.create<AtenAddScalarOp>(
|
|
loc, runningVar.getType(), runningVar, eps, /*alpha=*/one);
|
|
Value invStd = rewriter.create<AtenRsqrtOp>(loc, varEps.getType(), varEps);
|
|
Value normalizedInput = rewriter.create<AtenMulTensorOp>(
|
|
loc, inputSubMean.getType(), inputSubMean, invStd);
|
|
|
|
// The `weight` and `bias` must be reshaped to (1, C, 1?, 1?, 1?) to make it
|
|
// broadcast-compatible with (N, C, D?, H?, W?).
|
|
// 1. weight = weight.view(1, C, 1?, 1?, 1?)
|
|
// 2. bias = bias.view(1, C, 1?, 1?, 1?)
|
|
// 3. output = normalizedInput * weight + bias
|
|
Value batchNormOutput = normalizedInput;
|
|
if (!weight.getType().isa<Torch::NoneType>()) {
|
|
// Rank of `weight` must be exactly 1.
|
|
if (getTensorRank(weight) != 1)
|
|
return rewriter.notifyMatchFailure(op, "expected weight to be rank 1");
|
|
weight = rewriter.create<AtenViewOp>(loc, reshapeType, weight,
|
|
runningStatsSizeList);
|
|
batchNormOutput = rewriter.create<AtenMulTensorOp>(
|
|
loc, batchNormOutput.getType(), batchNormOutput, weight);
|
|
}
|
|
if (!bias.getType().isa<Torch::NoneType>()) {
|
|
// Rank of `bias` must be exactly 1.
|
|
if (getTensorRank(bias) != 1)
|
|
return rewriter.notifyMatchFailure(op, "expected bias to be rank 1");
|
|
bias = rewriter.create<AtenViewOp>(loc, reshapeType, bias,
|
|
runningStatsSizeList);
|
|
batchNormOutput = rewriter.create<AtenAddTensorOp>(
|
|
loc, batchNormOutput.getType(), batchNormOutput, bias, /*alpha=*/one);
|
|
}
|
|
|
|
// The `mean` and `invstd` outputs are empty tensors in inference mode.
|
|
Value zeroList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(zero.getType()), zero);
|
|
Value none = rewriter.create<ConstantNoneOp>(loc);
|
|
Value emptyMeanTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
|
|
loc, op.getType(1), zeroList, /*dtype=*/none, /*layout=*/none,
|
|
/*device=*/none, /*pin_memory=*/none, /*memory_format=*/none);
|
|
Value emptyInvStdTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
|
|
loc, op.getType(2), zeroList, /*dtype=*/none, /*layout=*/none,
|
|
/*device=*/none, /*pin_memory=*/none, /*memory_format=*/none);
|
|
|
|
rewriter.replaceOp(op,
|
|
{batchNormOutput, emptyMeanTensor, emptyInvStdTensor});
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompse `Aten_UnsafeViewOp` into `AtenViewOp`. _unsafe_view() differs from
|
|
// view() in that the returned tensor isn't treated as a view for the purposes
|
|
// of automatic differentiation. It's only safe to use if the `self` tensor is
|
|
// temporary. For example, the viewed tensor here (a + b) is discarded
|
|
// immediately after viewing:
|
|
//
|
|
// res = _unsafe_view(a + b, size);
|
|
//
|
|
// This is a hack because in-place operations on tensors treated like views
|
|
// can be much more expensive than the same operations on non-view tensors.
|
|
|
|
// Refer to
|
|
// https://github.com/pytorch/pytorch/blob/364055b2771ecf9b54f1d67a8bf44bb5496476d4/aten/src/ATen/native/TensorShape.cpp#L2072
|
|
namespace {
|
|
class DecomposeAten_UnsafeViewOp : public OpRewritePattern<Aten_UnsafeViewOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_UnsafeViewOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), op.self(),
|
|
op.size());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// In PyTorch, _reshape_alias just uses an already computed stride.
|
|
// See
|
|
// https://github.com/pytorch/pytorch/blob/d8c31a819d4a65e732b5901e3b994e1869851f1a/aten/src/ATen/native/TensorShape.cpp#L1153
|
|
// Note that this is the same decomposition as in AOTAutograd
|
|
// https://github.com/pytorch/functorch/blob/a3042d94e616d4143813668b1372d9d4545be14e/functorch/_src/aot_autograd.py#L104
|
|
namespace {
|
|
class DecomposeAten_ReshapeAliasOp
|
|
: public OpRewritePattern<Aten_ReshapeAliasOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_ReshapeAliasOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<AtenViewOp>(op, op.getType(), op.self(),
|
|
op.size());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose constant tensor like ops.
|
|
template <typename OpTy, typename NewOpTy>
|
|
class DecomposeConstantTensorNewLikeOp : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(OpTy op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value dtype = op.dtype();
|
|
if (dtype.getType().isa<Torch::NoneType>()) {
|
|
BaseTensorType tensorType =
|
|
op.self().getType().template cast<BaseTensorType>();
|
|
dtype =
|
|
getDtypeIntValueForType(rewriter, op.getLoc(), tensorType.getDtype());
|
|
}
|
|
rewriter.replaceOpWithNewOp<NewOpTy>(op, op.getType(), op.size(), dtype,
|
|
op.layout(), op.device(),
|
|
op.pin_memory());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.full` op into `aten.empty` and `aten.fill` ops.
|
|
class DecomposeAtenFullOp : public OpRewritePattern<AtenFullOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenFullOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value noneVal = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
Value emptyTensor = rewriter.create<AtenEmptyMemoryFormatOp>(
|
|
loc, op.getType(), op.size(), op.dtype(), op.layout(), op.device(),
|
|
op.pin_memory(), /*memory_format=*/noneVal);
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenFillScalarOp>(
|
|
op, op.getType(), emptyTensor, op.fill_value());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.full_like` op into `aten.empty_like` and `aten.fill` ops.
|
|
class DecomposeAtenFullLikeOp : public OpRewritePattern<AtenFullLikeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenFullLikeOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value emptyTensor = rewriter.create<AtenEmptyLikeOp>(
|
|
op.getLoc(), op.getType(), op.self(), op.dtype(), op.layout(),
|
|
op.device(), op.pin_memory(), op.memory_format());
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenFillScalarOp>(
|
|
op, op.getType(), emptyTensor, op.fill_value());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.index_put` op into `valsem.aten.index_put_impl` op.
|
|
class DecomposeAtenIndexPutOp : public OpRewritePattern<AtenIndexPutOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenIndexPutOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenIndexPutImplOp>(
|
|
op, op.getType(), op.self(), op.indices(), op.values(), op.accumulate(),
|
|
/*unsafe=*/cstFalse);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeAtenExpandAsOp : public OpRewritePattern<AtenExpandAsOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenExpandAsOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto sizeListType =
|
|
Torch::ListType::get(Torch::IntType::get(op.getContext()));
|
|
Value sizeList =
|
|
rewriter.create<AtenSizeOp>(op.getLoc(), sizeListType, op.other());
|
|
rewriter.replaceOpWithNewOp<AtenBroadcastToOp>(op, op.getType(), op.self(),
|
|
sizeList);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten._to_copy` op into `valsem.aten.copy` op.
|
|
class DecomposeAten_ToCopyOp : public OpRewritePattern<Aten_ToCopyOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(Aten_ToCopyOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value emptyTensor = rewriter.create<AtenEmptyLikeOp>(
|
|
op.getLoc(), op.getType(), op.self(), op.dtype(), op.layout(),
|
|
op.device(), op.pin_memory(), op.memory_format());
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenCopyOp>(
|
|
op, op.getType(), emptyTensor, op.self(), op.non_blocking());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.new_empty` op into `aten.empty.memory_format` op.
|
|
class DecomposeAtenNewEmptyOp : public OpRewritePattern<AtenNewEmptyOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenNewEmptyOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value noneVal = rewriter.create<ConstantNoneOp>(op.getLoc());
|
|
Value dtype = op.dtype();
|
|
if (dtype.getType().isa<Torch::NoneType>()) {
|
|
BaseTensorType tensorType = op.self().getType().cast<BaseTensorType>();
|
|
dtype =
|
|
getDtypeIntValueForType(rewriter, op.getLoc(), tensorType.getDtype());
|
|
}
|
|
rewriter.replaceOpWithNewOp<AtenEmptyMemoryFormatOp>(
|
|
op, op.getType(), op.size(), dtype, op.layout(), op.device(),
|
|
op.pin_memory(), /*memory_format=*/noneVal);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.index_put.hacked_twin` op into `valsem.aten.index_put_impl`
|
|
// op.
|
|
class DecomposeAtenIndexPutHackedTwinOp
|
|
: public OpRewritePattern<AtenIndexPutHackedTwinOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenIndexPutHackedTwinOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value cstFalse = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), false);
|
|
rewriter.replaceOpWithNewOp<ValsemVariantAtenIndexPutImplOp>(
|
|
op, op.getType(), op.self(), op.indices(), op.values(), op.accumulate(),
|
|
/*unsafe=*/cstFalse);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.pad` op into `aten.constant_pad_nd` op.
|
|
class DecomposeAtenPadOp : public OpRewritePattern<AtenPadOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenPadOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value value = op.value();
|
|
if (value.getType().isa<Torch::OptionalType>())
|
|
return rewriter.notifyMatchFailure(op, "optional type not supported");
|
|
if (value.getType().isa<Torch::NoneType>())
|
|
value = rewriter.create<Torch::ConstantFloatOp>(
|
|
op.getLoc(), rewriter.getF64FloatAttr(0));
|
|
|
|
rewriter.replaceOpWithNewOp<AtenConstantPadNdOp>(
|
|
op, op.getType(), op.self(), op.pad(), value);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.to.dtype_layout` op into `aten.to.dtype` op.
|
|
class DecomposeAtenToDtypeLayoutOp
|
|
: public OpRewritePattern<AtenToDtypeLayoutOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenToDtypeLayoutOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO: Add support for pin_memory arg equal to `True`.
|
|
if (!op.pin_memory().getType().isa<Torch::NoneType>()) {
|
|
bool pinMemory;
|
|
if (!matchPattern(op.pin_memory(), m_TorchConstantBool(&pinMemory)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: pin_memory must be a constant");
|
|
else if (pinMemory)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: pin_memory is expected to be false");
|
|
}
|
|
|
|
// TODO: Add support for non-None device arg.
|
|
if (!op.device().getType().isa<Torch::NoneType>()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: device arg must be None");
|
|
}
|
|
|
|
// TODO: Add support for non-strided layout.
|
|
// torch.layout is by default strided i.e. 0.
|
|
if (!op.layout().getType().isa<Torch::NoneType>()) {
|
|
int64_t tensorLayout;
|
|
if (!matchPattern(op.layout(), m_TorchConstantInt(&tensorLayout)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: layout must be a constant");
|
|
else if (tensorLayout != torch_upstream::Layout::Strided)
|
|
return rewriter.notifyMatchFailure(
|
|
op, "unimplemented: layout is expected to be strided");
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(op, op.getType(), op.self(),
|
|
op.dtype(), op.non_blocking(),
|
|
op.copy(), op.memory_format());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.adaptive_avg_pool2d` op into `aten.avg_pool2d` op.
|
|
//
|
|
// For AdaptiveAvgPool2d op, when the input size is an integer multiple of
|
|
// output size the kernel_size, stride and padding is calculated as follows:
|
|
// strideH = inH // outH
|
|
// strideW = inH // outH
|
|
// kernelH = inH - [(outH - 1) * strideH]
|
|
// kernelW = inW - [(outW - 1) * strideW]
|
|
// paddingH = 0, paddingW = 0
|
|
//
|
|
// For the special case, when the output size is one for all dimensions,
|
|
// the kernel size is same as the input size.
|
|
class DecomposeAtenAdaptiveAvgPool2dOp
|
|
: public OpRewritePattern<AtenAdaptiveAvgPool2dOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenAdaptiveAvgPool2dOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Location loc = op.getLoc();
|
|
MLIRContext *context = op.getContext();
|
|
|
|
Value input = op.self();
|
|
int64_t rank = getTensorRank(input);
|
|
SmallVector<Value, 2> inputHW;
|
|
Value dimH = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(rank - 2));
|
|
inputHW.push_back(
|
|
/*inH=*/rewriter.create<AtenSizeIntOp>(loc, input, dimH));
|
|
Value dimW = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(rank - 1));
|
|
inputHW.push_back(
|
|
/*inW=*/rewriter.create<AtenSizeIntOp>(loc, input, dimW));
|
|
|
|
Value outputShape = op.output_size();
|
|
SmallVector<Value> outputShapeSizesTorchInt;
|
|
getListConstructElements(outputShape, outputShapeSizesTorchInt);
|
|
|
|
// TODO: Add support for cases other than:
|
|
// 1.) inH == outH and inW == outW.
|
|
// 2.) outH == outW == 1
|
|
bool unitOutputSize = true;
|
|
for (Value outShape : outputShapeSizesTorchInt) {
|
|
int64_t outShapeInt;
|
|
if (!matchPattern(outShape, m_TorchConstantInt(&outShapeInt))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "output size is expected to be a constant");
|
|
}
|
|
if (outShapeInt != 1) {
|
|
unitOutputSize = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Value constantOne = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(1));
|
|
Value constantZero = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(0));
|
|
Value constantFalse = rewriter.create<Torch::ConstantBoolOp>(loc, false);
|
|
Value constantTrue = rewriter.create<Torch::ConstantBoolOp>(loc, true);
|
|
Value constantNone = rewriter.create<Torch::ConstantNoneOp>(loc);
|
|
SmallVector<Value, 2> kernelSize;
|
|
|
|
for (unsigned i = 0; i < inputHW.size(); i++) {
|
|
if (unitOutputSize) {
|
|
BaseTensorType inputTensorType = input.getType().cast<BaseTensorType>();
|
|
ArrayRef<int64_t> inputShape = inputTensorType.getSizes();
|
|
kernelSize.push_back(inputShape[rank - 2 + i] == kUnknownSize
|
|
? inputHW[i]
|
|
: rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(
|
|
inputShape[rank - 2 + i])));
|
|
} else {
|
|
Value cond = rewriter.create<AtenEqIntOp>(loc, inputHW[i],
|
|
outputShapeSizesTorchInt[i]);
|
|
rewriter.create<RuntimeAssertOp>(
|
|
loc, cond,
|
|
"unimplemented: only support cases where input and output size are "
|
|
"equal for non-unit output size");
|
|
|
|
Value outMinusOne = rewriter.create<AtenSubIntOp>(
|
|
loc, outputShapeSizesTorchInt[i], constantOne);
|
|
kernelSize.push_back(
|
|
rewriter.create<AtenSubIntOp>(loc, inputHW[i], outMinusOne));
|
|
}
|
|
}
|
|
|
|
Value kernelSizeList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(context)), kernelSize);
|
|
// Currently we only support cases where input size is equal to the output
|
|
// size or unit output size. For the former case, stride is always equal to
|
|
// one and for the latter the stride value doesn't matter, since the kernel
|
|
// size is same as the input size. Therfore, keeping the stride as one for
|
|
// the latter case as well for the ease of implementation.
|
|
Value strideList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(context)),
|
|
ValueRange{constantOne, constantOne});
|
|
Value paddingSizeList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(context)),
|
|
ValueRange{constantZero, constantZero});
|
|
|
|
rewriter.replaceOpWithNewOp<AtenAvgPool2dOp>(
|
|
op, op.getType(), input, kernelSizeList, strideList, paddingSizeList,
|
|
/*ceil_mode=*/constantFalse, /*count_include_pad=*/constantTrue,
|
|
/*divisor_override=*/constantNone);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.clamp_min` op into `aten.clamp` op.
|
|
class DecomposeAtenClampMinOp : public OpRewritePattern<AtenClampMinOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenClampMinOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value constantNone = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
|
|
rewriter.replaceOpWithNewOp<AtenClampOp>(op, op.getType(), op.self(),
|
|
op.min(), /*max=*/constantNone);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.clamp_max` op into `aten.clamp` op.
|
|
class DecomposeAtenClampMaxOp : public OpRewritePattern<AtenClampMaxOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenClampMaxOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value constantNone = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
|
|
rewriter.replaceOpWithNewOp<AtenClampOp>(op, op.getType(), op.self(),
|
|
/*min=*/constantNone, op.max());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.baddbmm` op into `aten.bmm`, `aten.mul.Scalar`, and
|
|
// `aten.add.Tensor` op.
|
|
class DecomposeAtenBaddbmmOp : public OpRewritePattern<AtenBaddbmmOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenBaddbmmOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value bmm =
|
|
rewriter.create<AtenBmmOp>(loc, op.getType(), op.batch1(), op.batch2());
|
|
Value alphaTimesBmm =
|
|
rewriter.create<AtenMulScalarOp>(loc, op.getType(), bmm, op.alpha());
|
|
Value input = op.self();
|
|
BaseTensorType inputType = input.getType().cast<BaseTensorType>();
|
|
BaseTensorType resultType =
|
|
op->getResult(0).getType().cast<BaseTensorType>();
|
|
if (inputType.hasDtype() && resultType.hasDtype() &&
|
|
inputType.getDtype() != resultType.getDtype()) {
|
|
input = convertTensorToDtype(rewriter, loc, input, resultType.getDtype());
|
|
}
|
|
rewriter.replaceOpWithNewOp<AtenAddTensorOp>(
|
|
op, op.getType(), alphaTimesBmm, op.self(), op.beta());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.floor_divide` op into `aten.div.Tensor_mode` op.
|
|
class DecomposeAtenFloorDivideOp : public OpRewritePattern<AtenFloorDivideOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenFloorDivideOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value cstStrFloor =
|
|
rewriter.create<Torch::ConstantStrOp>(op.getLoc(), "floor");
|
|
rewriter.replaceOpWithNewOp<AtenDivTensorModeOp>(
|
|
op, op.getType(), op.self(), op.other(),
|
|
/*rounding_mode=*/cstStrFloor);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose `aten.numpy_T` op into `aten.permute` op.
|
|
class DecomposeAtenNumpyTOp : public OpRewritePattern<AtenNumpyTOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenNumpyTOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
int64_t inputRank = getTensorRank(self);
|
|
|
|
SmallVector<Value> dimListElements;
|
|
for (int64_t i = inputRank - 1; i >= 0; i--)
|
|
dimListElements.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i)));
|
|
Value dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(op->getContext())),
|
|
dimListElements);
|
|
rewriter.replaceOpWithNewOp<AtenPermuteOp>(op, op.getType(), self, dimList);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
template <typename OpTy>
|
|
static LogicalResult calculateVariance(OpTy op, PatternRewriter &rewriter,
|
|
bool unbiased, int64_t correction) {
|
|
Location loc = op.getLoc();
|
|
Value self = op.self();
|
|
Value dimList = op.dim();
|
|
Value keepDim = op.keepdim();
|
|
BaseTensorType inputTensorTy = self.getType().cast<BaseTensorType>();
|
|
Type outputType = op.getType();
|
|
BaseTensorType outputTensorType = outputType.cast<BaseTensorType>();
|
|
Type newOutputType = outputTensorType.getWithSizesAndDtype(
|
|
outputTensorType.getSizes(), rewriter.getF64Type());
|
|
if (!inputTensorTy.hasDtype() ||
|
|
!inputTensorTy.getDtype().isa<mlir::FloatType>()) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "support floating-point type input only");
|
|
}
|
|
|
|
// Upcasting the input tensor to `F64` dtype for higher precision during the
|
|
// computation of the result.
|
|
if (inputTensorTy.getDtype().getIntOrFloatBitWidth() != 64) {
|
|
self = convertTensorToDtype(rewriter, loc, self, rewriter.getF64Type());
|
|
inputTensorTy = self.getType().cast<BaseTensorType>();
|
|
}
|
|
|
|
unsigned inputRank = getTensorRank(self);
|
|
SmallVector<Value> dimListElements;
|
|
bool isNoneOrEmpty = true;
|
|
if (!dimList.getType().template isa<Torch::NoneType>()) {
|
|
if (!getListConstructElements(dimList, dimListElements))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "expect dimList to be constructed from list construct");
|
|
if (!dimListElements.empty() || inputRank == 0)
|
|
isNoneOrEmpty = false;
|
|
}
|
|
if (isNoneOrEmpty) {
|
|
for (unsigned i = 0; i < inputRank; i++)
|
|
dimListElements.push_back(rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(i)));
|
|
dimList = rewriter.create<PrimListConstructOp>(
|
|
loc, Torch::ListType::get(Torch::IntType::get(op.getContext())),
|
|
dimListElements);
|
|
}
|
|
Type meanDimResultType = inputTensorTy;
|
|
for (unsigned i = 0; i < dimListElements.size(); i++)
|
|
meanDimResultType = computeReductionType(
|
|
rewriter, op, meanDimResultType.cast<BaseTensorType>(),
|
|
dimListElements[i],
|
|
/*keepDim=*/true);
|
|
|
|
Value constantNone = rewriter.create<ConstantNoneOp>(loc);
|
|
Value constantTrue = rewriter.create<ConstantBoolOp>(loc, true);
|
|
Value meanAlongDims = rewriter.create<AtenMeanDimOp>(
|
|
loc, meanDimResultType, self, dimList, /*keepDim=*/constantTrue,
|
|
/*dtype=*/constantNone);
|
|
Value subMean =
|
|
createTensorSub(rewriter, loc, inputTensorTy, self, meanAlongDims);
|
|
Value square = rewriter.create<AtenSquareOp>(loc, inputTensorTy, subMean);
|
|
|
|
if (!unbiased) {
|
|
Value result = rewriter.create<AtenMeanDimOp>(
|
|
loc, newOutputType, square, dimList, keepDim, /*dtype=*/constantNone);
|
|
result = convertTensorToDtype(rewriter, loc, result,
|
|
outputTensorType.getDtype());
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
// Divide the square sum by productDimSize - correction.
|
|
Value squareSum = rewriter.create<AtenSumDimIntListOp>(
|
|
loc, newOutputType, square, dimList, keepDim, /*dtype=*/constantNone);
|
|
|
|
// `productDimSize` is product of sizes of dimensions to be reduced.
|
|
Value constantOne =
|
|
rewriter.create<Torch::ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
|
Value productDimSize = constantOne;
|
|
for (Value dim : dimListElements) {
|
|
Value dimSize = rewriter.create<AtenSizeIntOp>(loc, self, dim);
|
|
productDimSize =
|
|
rewriter.create<AtenMulIntOp>(loc, productDimSize, dimSize);
|
|
}
|
|
Value cstCorrection = rewriter.create<Torch::ConstantIntOp>(
|
|
loc, rewriter.getI64IntegerAttr(correction));
|
|
// The `correction` value should be less than or equal to `productDimSize +
|
|
// 1`.
|
|
Value productDimSizePlusOne =
|
|
rewriter.create<AtenAddIntOp>(loc, productDimSize, constantOne);
|
|
Value cond =
|
|
rewriter.create<AtenGeIntOp>(loc, productDimSizePlusOne, cstCorrection);
|
|
rewriter.create<RuntimeAssertOp>(
|
|
loc, cond,
|
|
"correction value should be less than or equal to productDimSize + 1");
|
|
Value productDimSizeSubCorrection =
|
|
rewriter.create<AtenSubIntOp>(loc, productDimSize, cstCorrection);
|
|
Value result = rewriter.create<AtenDivScalarOp>(loc, newOutputType, squareSum,
|
|
productDimSizeSubCorrection);
|
|
result =
|
|
convertTensorToDtype(rewriter, loc, result, outputTensorType.getDtype());
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
// Decompose aten.var(x, dims) into:
|
|
// sub = aten.sub(x, aten.mean(x, dims))
|
|
// square = aten.square(sub)
|
|
// For Unbiased case:
|
|
// out = aten.sum(square, dims) / (productDimSize-1)
|
|
// For Biased case:
|
|
// out = aten.mean(square, dims)
|
|
namespace {
|
|
class DecomposeAtenVarDimOp : public OpRewritePattern<AtenVarDimOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenVarDimOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
bool unbiased;
|
|
if (!matchPattern(op.unbiased(), m_TorchConstantBool(&unbiased))) {
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Only support constant unbiased for aten.var");
|
|
}
|
|
int64_t correction = unbiased ? 1 : 0;
|
|
if (failed(calculateVariance<AtenVarDimOp>(op, rewriter, unbiased,
|
|
correction)))
|
|
return rewriter.notifyMatchFailure(op, "invalid variance parameters");
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Decompose aten.var(x, dims) into:
|
|
// sub = aten.sub(x, aten.mean(x, dims))
|
|
// square = aten.square(sub)
|
|
// out = aten.sum(square, dims) / (productDimSize - correction)
|
|
namespace {
|
|
class DecomposeAtenVarCorrectionOp
|
|
: public OpRewritePattern<AtenVarCorrectionOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenVarCorrectionOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
int64_t correction;
|
|
if (!op.correction().getType().isa<Torch::NoneType>()) {
|
|
if (!matchPattern(op.correction(), m_TorchConstantInt(&correction)))
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Only support constant int correction for aten.var");
|
|
} else {
|
|
// The default value in case of `correction` being None is 1.
|
|
correction = 1;
|
|
}
|
|
bool unbiased = correction == 0 ? false : true;
|
|
if (failed(calculateVariance<AtenVarCorrectionOp>(op, rewriter, unbiased,
|
|
correction)))
|
|
return rewriter.notifyMatchFailure(op, "invalid variance parameters");
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
// Decompose the `aten.select_scatter` operation into `aten.slice_scatter` op.
|
|
class DecomposeAtenSelectScatterOp
|
|
: public OpRewritePattern<AtenSelectScatterOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
LogicalResult matchAndRewrite(AtenSelectScatterOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Location loc = op.getLoc();
|
|
Value start = op.index();
|
|
Value dim = op.dim();
|
|
Value self = op.self();
|
|
Value src = op.src();
|
|
|
|
Value one =
|
|
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(1));
|
|
Value startPlusOne =
|
|
rewriter.create<AtenAddIntOp>(loc, one.getType(), start, one);
|
|
BaseTensorType srcTensorType = src.getType().cast<BaseTensorType>();
|
|
SmallVector<int64_t> sizes;
|
|
if (!srcTensorType.hasSizes())
|
|
return rewriter.notifyMatchFailure(op, "src tensor must have size");
|
|
|
|
ArrayRef<int64_t> srcShape = srcTensorType.getSizes();
|
|
// `src` has a reduced rank. Hence add 1.
|
|
int64_t srcRank = srcShape.size() + 1;
|
|
int64_t dimInt = 0;
|
|
if (matchPattern(dim, m_TorchConstantInt(&dimInt))) {
|
|
dimInt = toPositiveDim(dimInt, srcRank);
|
|
if (!isValidDim(dimInt, srcRank))
|
|
return rewriter.notifyMatchFailure(op, "dim is not a valid dim");
|
|
|
|
sizes.append(srcShape.begin(), srcShape.end());
|
|
sizes.insert(sizes.begin() + dimInt, 1);
|
|
|
|
} else {
|
|
sizes.resize(srcShape.size() + 1, kUnknownSize);
|
|
}
|
|
Type srcType = srcTensorType.getWithSizesAndDtype(llvm::makeArrayRef(sizes),
|
|
srcTensorType.getDtype());
|
|
src = rewriter.create<AtenUnsqueezeOp>(loc, srcType, src, dim);
|
|
rewriter.replaceOpWithNewOp<AtenSliceScatterOp>(
|
|
op, op.self().getType(), self, src, dim, start, startPlusOne,
|
|
/*step=*/one);
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
class DecomposeComplexOpsPass
|
|
: public DecomposeComplexOpsBase<DecomposeComplexOpsPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext *context = &getContext();
|
|
RewritePatternSet patterns(context);
|
|
ConversionTarget target(*context);
|
|
target.addLegalDialect<Torch::TorchDialect>();
|
|
|
|
patterns.add<DecomposeAtenSoftmaxIntOp>(context);
|
|
target.addIllegalOp<AtenSoftmaxIntOp>();
|
|
patterns.add<DecomposeAten_SoftmaxOp>(context);
|
|
target.addIllegalOp<Aten_SoftmaxOp>();
|
|
patterns.add<DecomposeAten_LogSoftmaxOp>(context);
|
|
target.addIllegalOp<Aten_LogSoftmaxOp>();
|
|
patterns.add<DecomposeAtenLogSoftmaxIntOp>(context);
|
|
target.addIllegalOp<AtenLogSoftmaxIntOp>();
|
|
patterns.add<DecomposeAtenEmptyLikeOp>(context);
|
|
target.addIllegalOp<AtenEmptyLikeOp>();
|
|
patterns.add<DecomposeConstantTensorAllocLikeOp<AtenOnesLikeOp, 1>>(
|
|
context);
|
|
target.addIllegalOp<AtenOnesLikeOp>();
|
|
patterns.add<DecomposeConstantTensorAllocLikeOp<AtenZerosLikeOp, 0>>(
|
|
context);
|
|
target.addIllegalOp<AtenZerosLikeOp>();
|
|
patterns.add<DecomposeAtenRepeatOp>(context);
|
|
target.addIllegalOp<AtenRepeatOp>();
|
|
patterns.add<DecomposeAtenExpandOp>(context);
|
|
target.addIllegalOp<AtenExpandOp>();
|
|
patterns.add<DecomposeAtenWhereScalarOp>(context);
|
|
target.addIllegalOp<AtenWhereScalarOp>();
|
|
patterns.add<DecomposeAtenWhereScalarOtherOp>(context);
|
|
target.addIllegalOp<AtenWhereScalarOtherOp>();
|
|
patterns.add<DecomposeAtenWhereScalarSelfOp>(context);
|
|
target.addIllegalOp<AtenWhereScalarSelfOp>();
|
|
patterns.add<DecomposeAtenSizeOp>(context);
|
|
target.addIllegalOp<AtenSizeOp>();
|
|
patterns.add<DecomposeAtenReshapeOp>(context);
|
|
target.addIllegalOp<AtenReshapeOp>();
|
|
patterns.add<DecomposeAten_SoftmaxBackwardDataOp>(context);
|
|
target.addIllegalOp<Aten_SoftmaxBackwardDataOp>();
|
|
patterns.add<DecomposeAtenTanhBackwardOp>(context);
|
|
target.addIllegalOp<AtenTanhBackwardOp>();
|
|
patterns.add<DecomposeAtenAddmmOp>(context);
|
|
target.addIllegalOp<AtenAddmmOp>();
|
|
patterns.add<DecomposeAtenMeanOp>(context);
|
|
target.addIllegalOp<AtenMeanOp>();
|
|
patterns.add<DecomposeAtenMeanDimOp>(context);
|
|
target.addIllegalOp<AtenMeanDimOp>();
|
|
patterns.add<DecomposeAtenSelectIntOp>(context);
|
|
target.addIllegalOp<AtenSelectIntOp>();
|
|
patterns.add<DecomposeAtenMatmulOp>(context);
|
|
target.addIllegalOp<AtenTOp>();
|
|
patterns.add<DecomposeAtenTOp>(context);
|
|
patterns.add<DecomposeAten_LogSoftmaxBackwardDataOp>(context);
|
|
target.addIllegalOp<Aten_LogSoftmaxBackwardDataOp>();
|
|
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
|
|
int lhsRank = getTensorRank(op.self());
|
|
int rhsRank = getTensorRank(op.other());
|
|
|
|
// Make aten.matmul legal if the following condition is satisfied.
|
|
return (lhsRank != 2 || rhsRank != 2) && (lhsRank != 3 || rhsRank != 3);
|
|
});
|
|
patterns.add<DecomposeAtenAddCLikeOp<AtenAddcmulOp, AtenMulTensorOp>>(
|
|
context);
|
|
target.addIllegalOp<AtenAddcmulOp>();
|
|
patterns.add<DecomposeAtenAddCLikeOp<AtenAddcdivOp, AtenDivTensorOp>>(
|
|
context);
|
|
target.addIllegalOp<AtenAddcdivOp>();
|
|
target.addIllegalOp<AtenLayerNormOp>();
|
|
patterns.add<DecomposeAtenLayerNormOp>(context);
|
|
target.addIllegalOp<AtenNativeBatchNormOp>();
|
|
patterns.add<DecomposeAtenNativeBatchNormOp>(context);
|
|
target.addIllegalOp<AtenConvolutionOverrideableOp>();
|
|
patterns.add<DecomposeAtenConvolutionOverrideableOp>(context);
|
|
target.addIllegalOp<Aten_ConvolutionOp>();
|
|
patterns.add<DecomposeAten_ConvolutionOp>(context);
|
|
target.addIllegalOp<AtenConv2dOp>();
|
|
patterns.add<DecomposeAtenConv2dOp>(context);
|
|
patterns.add<DecomposeAtenArangeOp>(context);
|
|
target.addIllegalOp<AtenArangeOp>();
|
|
patterns.add<DecomposeAtenArangeStartOp>(context);
|
|
target.addIllegalOp<AtenArangeStartOp>();
|
|
patterns.add<DecomposeAtenArgMaxOp>(context);
|
|
target.addIllegalOp<AtenArgmaxOp>();
|
|
patterns.add<DecomposeAtenSquareOp>(context);
|
|
target.addIllegalOp<AtenSquareOp>();
|
|
patterns.add<DecomposeAtenVarOp>(context);
|
|
target.addIllegalOp<AtenVarOp>();
|
|
patterns.add<DecomposeAtenStdOp>(context);
|
|
target.addIllegalOp<AtenStdOp>();
|
|
patterns.add<DecomposeAten_UnsafeViewOp>(context);
|
|
target.addIllegalOp<Aten_UnsafeViewOp>();
|
|
patterns.add<DecomposeAten_ReshapeAliasOp>(context);
|
|
target.addIllegalOp<Aten_ReshapeAliasOp>();
|
|
patterns.add<DecomposeAtenBernoulliOp>(context);
|
|
target.addIllegalOp<AtenBernoulliOp>();
|
|
patterns.add<DecomposeValsemVariantAtenBernoulliFloatOp>(context);
|
|
target.addIllegalOp<ValsemVariantAtenBernoulliFloatOp>();
|
|
patterns.add<DecomposeValsemVariantAtenBernoulliTensorOp>(context);
|
|
target.addIllegalOp<ValsemVariantAtenBernoulliTensorOp>();
|
|
patterns.add<DecomposeAtenZeroOp>(context);
|
|
target.addIllegalOp<AtenZeroOp>();
|
|
patterns.add<DecomposeAtenRandLikeOp>(context);
|
|
target.addIllegalOp<AtenRandLikeOp>();
|
|
patterns.add<DecomposeAtenHardsigmoidOp>(context);
|
|
target.addIllegalOp<AtenHardsigmoidOp>();
|
|
patterns.add<DecomposeAtenHardswishOp>(context);
|
|
target.addIllegalOp<AtenHardswishOp>();
|
|
patterns.add<DecomposeAtenSoftplusOp>(context);
|
|
target.addIllegalOp<AtenSoftplusOp>();
|
|
patterns.add<DecomposeAtenSiluOp>(context);
|
|
target.addIllegalOp<AtenSiluOp>();
|
|
patterns.add<DecomposeConstantTensorNewLikeOp<AtenNewZerosOp, AtenZerosOp>>(
|
|
context);
|
|
target.addIllegalOp<AtenNewZerosOp>();
|
|
patterns.add<DecomposeConstantTensorNewLikeOp<AtenNewOnesOp, AtenOnesOp>>(
|
|
context);
|
|
target.addIllegalOp<AtenNewOnesOp>();
|
|
patterns.add<DecomposeAtenHardtanhOp>(context);
|
|
target.addIllegalOp<AtenHardtanhOp>();
|
|
patterns.add<DecomposeAtenFullOp>(context);
|
|
target.addIllegalOp<AtenFullOp>();
|
|
patterns.add<DecomposeAtenFullLikeOp>(context);
|
|
target.addIllegalOp<AtenFullLikeOp>();
|
|
patterns.add<DecomposeAtenIndexPutOp>(context);
|
|
target.addIllegalOp<AtenIndexPutOp>();
|
|
patterns.add<DecomposeAtenExpandAsOp>(context);
|
|
target.addIllegalOp<AtenExpandAsOp>();
|
|
patterns.add<DecomposeAten_ToCopyOp>(context);
|
|
target.addIllegalOp<Aten_ToCopyOp>();
|
|
patterns.add<DecomposeAtenDropoutOp>(context);
|
|
target.addIllegalOp<AtenDropoutOp>();
|
|
target.addIllegalOp<AtenNewEmptyOp>();
|
|
patterns.add<DecomposeAtenNewEmptyOp>(context);
|
|
patterns.add<DecomposeAtenIndexPutHackedTwinOp>(context);
|
|
target.addIllegalOp<AtenIndexPutHackedTwinOp>();
|
|
target.addIllegalOp<AtenPadOp>();
|
|
patterns.add<DecomposeAtenPadOp>(context);
|
|
patterns.add<DecomposeAtenToDtypeLayoutOp>(context);
|
|
target.addIllegalOp<AtenToDtypeLayoutOp>();
|
|
patterns.add<DecomposeAtenAdaptiveAvgPool2dOp>(context);
|
|
target.addIllegalOp<AtenAdaptiveAvgPool2dOp>();
|
|
patterns.add<DecomposeAtenClampMinOp>(context);
|
|
target.addIllegalOp<AtenClampMinOp>();
|
|
patterns.add<DecomposeAtenClampMaxOp>(context);
|
|
target.addIllegalOp<AtenClampMaxOp>();
|
|
patterns.add<DecomposeAtenBaddbmmOp>(context);
|
|
target.addIllegalOp<AtenBaddbmmOp>();
|
|
patterns.add<DecomposeAtenFloorDivideOp>(context);
|
|
target.addIllegalOp<AtenFloorDivideOp>();
|
|
patterns.add<DecomposeAtenNumpyTOp>(context);
|
|
target.addIllegalOp<AtenNumpyTOp>();
|
|
patterns.add<DecomposeAtenSelectScatterOp>(context);
|
|
target.addIllegalOp<AtenSelectScatterOp>();
|
|
patterns.add<DecomposeAtenVarDimOp>(context);
|
|
target.addIllegalOp<AtenVarDimOp>();
|
|
patterns.add<DecomposeAtenVarCorrectionOp>(context);
|
|
target.addIllegalOp<AtenVarCorrectionOp>();
|
|
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns)))) {
|
|
return signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::torch::Torch::createDecomposeComplexOpsPass() {
|
|
return std::make_unique<DecomposeComplexOpsPass>();
|
|
}
|