torch-mlir/lib/Dialect/Torch/IR/TorchOps.cpp

4971 lines
181 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "torch-mlir-torch-dialect"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/Support/Debug.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LLVM.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Casting.h"
using namespace mlir;
using namespace mlir::torch;
using namespace mlir::torch::Torch;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
Value mlir::torch::Torch::adjustStaticInformation(OpBuilder &builder,
Location loc, Value value,
Type desiredType,
bool userAllowsRefinement) {
Type type = value.getType();
// If the value is already of the desired type, we're done.
if (type == desiredType)
return value;
// If the type is a tensor, then adjust the static information.
if ((isa<ValueTensorType>(type) && isa<ValueTensorType>(desiredType)) ||
(isa<NonValueTensorType>(type) && isa<NonValueTensorType>(desiredType))) {
Value adjusted = builder.create<TensorStaticInfoCastOp>(value.getLoc(),
desiredType, value);
return adjusted;
}
// If the type is a subtype of desiredType, then we need to derefine it to
// desiredType, unless the user allows refinement.
if (isValidSubtype(type, desiredType)) {
if (!userAllowsRefinement) {
Value adjusted =
builder.create<DerefineOp>(value.getLoc(), desiredType, value);
return adjusted;
} else {
return value;
}
}
// If the desiredType is subtype of type, then we assume that the desiredType
// is dynamically valid, so we do an unchecked cast.
if (isValidSubtype(desiredType, type)) {
Value adjusted =
builder.create<PrimUncheckedCastOp>(value.getLoc(), desiredType, value);
return adjusted;
}
// No known adjustment.
return Value();
}
Value mlir::torch::Torch::copyTensorToType(OpBuilder &builder, Location loc,
BaseTensorType newType,
Value tensor) {
auto originalType = cast<BaseTensorType>(tensor.getType());
// Adjust the static information in the type to match between the original and
// new types.
if (!originalType.hasSameSizesAndDtype(newType)) {
tensor = builder.create<TensorStaticInfoCastOp>(
loc, originalType.getWithSizesAndDtypeFrom(newType), tensor);
}
// Unless both the original and new types are both value tensors, we end
// up creating one op that converts between the value and non-value tensor
// domains. If both the original and new types are both non-value tensors,
// then we do the copy by going to a value tensor and back.
if (isa<NonValueTensorType>(tensor.getType()))
tensor = builder.create<CopyToValueTensorOp>(loc, tensor);
if (isa<NonValueTensorType>(newType))
tensor = builder.create<CopyToNonValueTensorOp>(loc, tensor);
return tensor;
}
bool mlir::torch::Torch::isListPotentiallyMutated(Value list) {
assert(isa<Torch::ListType>(list.getType()));
return llvm::any_of(list.getUsers(), potentiallyMutatesListOperands);
}
bool mlir::torch::Torch::potentiallyMutatesListOperands(Operation *op) {
// TODO: Find a better place to put this assertion.
assert((!op->hasTrait<Torch::OpTrait::HasValueSemantics>() ||
op->hasTrait<OpTrait::ReadOnly>()) &&
"HasValueSemantics should imply ReadOnly!");
// ReadOnly ops trivially do not mutate any list operands.
if (op->hasTrait<Torch::OpTrait::ReadOnly>())
return false;
// Ops with no MemoryEffectOpInterface effects also do not mutate any list
// operands.
if (auto effects = dyn_cast<MemoryEffectOpInterface>(op)) {
if (effects.hasNoEffect())
return false;
}
// Conservatively assume that an op might mutate any list operands.
return true;
}
static IntegerAttr getI64IntegerAttr(MLIRContext *context, int64_t value) {
return IntegerAttr::get(IntegerType::get(context, 64), value);
}
static FloatAttr getF64FloatAttr(MLIRContext *context, double value) {
return FloatAttr::get(Float64Type::get(context), value);
}
static Value getScalarIntValue(Value input, Location loc,
PatternRewriter &rewriter) {
auto inputType = input.getType();
if (isa<Torch::IntType>(inputType)) {
return input;
}
auto inputTensorType = dyn_cast<BaseTensorType>(inputType);
if (!inputTensorType)
return nullptr;
Type inputDtype = inputTensorType.getOptionalDtype();
if (!inputDtype || !(inputDtype.isInteger(64) || inputDtype.isInteger(1)))
return nullptr;
std::optional<unsigned> inputRank = getTensorRank(input);
if (!inputRank || *inputRank != 0)
return nullptr;
if (auto valueTensorLiteralOp = input.getDefiningOp<ValueTensorLiteralOp>()) {
if (inputDtype.isInteger(64)) {
auto val = valueTensorLiteralOp.getValue()
.cast<DenseIntElementsAttr>()
.getSplatValue<int64_t>();
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(val));
} else {
auto val = valueTensorLiteralOp.getValue()
.cast<DenseIntElementsAttr>()
.getSplatValue<bool>();
return rewriter.create<Torch::ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(val));
}
} else if (auto primNumToTensorScalarOp =
input.getDefiningOp<PrimNumToTensorScalarOp>()) {
return primNumToTensorScalarOp.getA();
} else if (auto tensorIntOp = input.getDefiningOp<AtenTensorIntOp>()) {
return tensorIntOp.getT();
}
return nullptr;
}
static Value getScalarFloatValue(Value input, Location loc,
PatternRewriter &rewriter) {
auto inputType = input.getType();
if (isa<Torch::FloatType>(inputType)) {
return input;
}
auto inputTensorType = dyn_cast<BaseTensorType>(inputType);
if (!inputTensorType)
return nullptr;
Type inputDtype = inputTensorType.getOptionalDtype();
if (!inputDtype ||
(!inputDtype.isF16() && !inputDtype.isF32() && !inputDtype.isF64()))
return nullptr;
std::optional<unsigned> inputRank = getTensorRank(input);
if (!inputRank || *inputRank != 0)
return nullptr;
if (auto valueTensorLiteralOp = input.getDefiningOp<ValueTensorLiteralOp>()) {
auto val = valueTensorLiteralOp.getValue()
.cast<DenseFPElementsAttr>()
.getSplatValue<FloatAttr>()
.getValueAsDouble();
return rewriter.create<Torch::ConstantFloatOp>(
loc, rewriter.getF64FloatAttr(val));
} else if (auto primNumToTensorScalarOp =
input.getDefiningOp<PrimNumToTensorScalarOp>()) {
return primNumToTensorScalarOp.getA();
} else if (auto tensorFloatOp = input.getDefiningOp<AtenTensorFloatOp>()) {
return tensorFloatOp.getT();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// MethodOp
//===----------------------------------------------------------------------===//
LogicalResult MethodOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto func = symbolTable.lookupNearestSymbolFrom<func::FuncOp>(
*this, getFunctionAttr());
if (!func)
return emitError() << "'@" << getFunction()
<< "' does not reference a valid function";
if (func.getVisibility() != SymbolTable::Visibility::Private)
return emitError() << "'@" << getFunction()
<< "' must reference a private function";
if (func.isDeclaration())
return emitError() << "'@" << getFunction()
<< "' must reference a function that is defined (not "
"merely declared)";
auto expectedReceiverArgType = NnModuleType::get(
getContext(), getOperation()->getParentOfType<ClassTypeOp>().getName());
if (func.getFunctionType().getNumInputs() == 0 ||
func.getFunctionType().getInput(0) != expectedReceiverArgType) {
return emitError() << "the referenced function '" << getFunction()
<< "' must have a first argument of type "
<< expectedReceiverArgType;
}
return success();
}
//===----------------------------------------------------------------------===//
// NnModuleOp
//===----------------------------------------------------------------------===//
LogicalResult NnModuleOp::verify() {
for (Operation &child : *getBody())
if (!isa<SlotOp, NnModuleTerminatorOp>(&child))
return child.emitOpError() << "is not allowed inside 'torch.nn_module'";
return success();
}
LogicalResult NnModuleOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
auto classType = symbolTable.lookupNearestSymbolFrom<ClassTypeOp>(
*this, SymbolRefAttr::get(getContext(), getClassName()));
if (!classType)
return emitError() << "'" << getClassName()
<< "' does not reference a valid class type";
auto attrs = llvm::to_vector<6>(getBody()->getOps<SlotOp>());
auto attrDefs = llvm::to_vector<6>(classType.getBody()->getOps<AttrOp>());
if (attrs.size() != attrDefs.size())
return emitError() << "number of 'torch.slot's in a 'torch.nn_module' must "
"match number of 'torch.attr's in "
"the corresponding 'torch.class_type'";
for (int i = 0, e = attrs.size(); i != e; i++) {
SlotOp attr = attrs[i];
AttrOp attrDef = attrDefs[i];
if (!isValidSubtype(attr.getValue().getType(), attrDef.getType()) ||
attr.getName() != attrDef.getName()) {
return attr.emitOpError()
.append("is expected to match type and name of '",
attrDef.getOperation(), "'")
.attachNote(attrDef.getLoc())
.append("see torch.attr at corresponding index ", i, " here");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimListConstructOp
//===----------------------------------------------------------------------===//
LogicalResult PrimListConstructOp::verify() {
auto resultType = getResult().getType();
auto resultElementType = dyn_cast<ListType>(resultType).getContainedType();
auto matchResultElementType = [&](Type type) {
return isValidSubtype(type, resultElementType);
};
if (!llvm::all_of(getOperandTypes(), matchResultElementType)) {
return emitError() << "operand types should have the same type as the "
"list contained type";
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimDictConstructOp
//===----------------------------------------------------------------------===//
LogicalResult PrimDictConstructOp::verify() {
auto isValidSubTypeOf = [](Type expectedType) {
return [=](Type type) { return isValidSubtype(type, expectedType); };
};
if (!llvm::all_of(getKeys().getTypes(), isValidSubTypeOf(getKeyType())))
return emitError() << "keys should be of Dict key type";
if (!llvm::all_of(getValues().getTypes(), isValidSubTypeOf(getValueType())))
return emitError() << "values should be of Dict value type";
return success();
}
//===----------------------------------------------------------------------===//
// ClassTypeOp
//===----------------------------------------------------------------------===//
LogicalResult ClassTypeOp::verify() {
llvm::StringMap<Operation *> namesToOps;
for (Operation &child : getBody()->without_terminator()) {
if (!isa<AttrOp, MethodOp>(&child))
return child.emitOpError() << "is not allowed inside `torch.class_type`";
StringRef name;
if (auto attr = dyn_cast<AttrOp>(child))
name = attr.getName();
else
name = cast<MethodOp>(child).getName();
auto itAndWasInserted = namesToOps.insert({name, &child});
auto it = itAndWasInserted.first;
bool wasInserted = itAndWasInserted.second;
if (!wasInserted) {
auto diag = emitOpError().append("has duplicate attr/method with name '",
name, "'");
diag.attachNote(it->second->getLoc())
.append("see first conflicting attr/method here");
diag.attachNote(child.getLoc())
.append("see second conflicting attr/method here");
return failure();
}
}
return success();
}
//===----------------------------------------------------------------------===//
// PrimLoopOp
//===----------------------------------------------------------------------===//
OperandRange PrimLoopOp::getEntrySuccessorOperands(RegionBranchPoint point) {
assert(point == getRegion());
return getIterArgsInit();
}
void PrimLoopOp::getSuccessorRegions(
RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> &regions) {
Region &region = getRegion();
if (!point.getRegionOrNull()) {
regions.emplace_back(&region, region.getArguments().slice(1));
return;
}
assert(point == region);
regions.emplace_back(&region, region.getArguments().slice(1));
regions.emplace_back(getResults());
}
bool PrimLoopOp::isForLike() {
bool b;
return matchPattern(getInitialCondition(), m_TorchConstantBool(&b)) && b;
}
//===----------------------------------------------------------------------===//
// PrimLoopConditionOp
//===----------------------------------------------------------------------===//
MutableOperandRange
PrimLoopConditionOp::getMutableSuccessorOperands(RegionBranchPoint point) {
// Pass all operands except the condition to the successor which is the
// parent loop op.
return getIterArgsMutable();
}
//===----------------------------------------------------------------------===//
// PrimIfOp
//===----------------------------------------------------------------------===//
ParseResult PrimIfOp::parse(OpAsmParser &parser, OperationState &result) {
// Create the regions.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::UnresolvedOperand cond;
Type boolType = builder.getType<Torch::BoolType>();
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, boolType, result.operands))
return failure();
// Parse results type list.
if (parser.parseArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
// Parse the 'else' region.
if (parser.parseKeyword("else"))
return failure();
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void PrimIfOp::print(OpAsmPrinter &p) {
p << " " << getCondition();
p << " -> (" << getResultTypes() << ") ";
p.printRegion(getThenRegion(), /*printEntryBlockArgs=*/false);
p << " else ";
p.printRegion(getElseRegion(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict((*this)->getAttrs());
}
void PrimIfOp::getSuccessorRegions(RegionBranchPoint point,
SmallVectorImpl<RegionSuccessor> &regions) {
// The `then` and the `else` region branch back to the parent operation.
if (point.getRegionOrNull()) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
// If the condition is constant, we can give a more precise answer.
bool condition;
if (matchPattern(getCondition(), m_TorchConstantBool(&condition))) {
Region *executedRegion = condition ? &getThenRegion() : &getElseRegion();
regions.push_back(RegionSuccessor(executedRegion));
return;
}
// If the condition isn't constant, both regions may be executed.
regions.push_back(RegionSuccessor(&getThenRegion()));
regions.push_back(RegionSuccessor(&getElseRegion()));
return;
}
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
Region &region, ValueRange blockArgs = {}) {
assert(llvm::hasSingleElement(region) && "expected single-region block");
Block *block = &region.front();
Operation *terminator = block->getTerminator();
ValueRange results = terminator->getOperands();
rewriter.inlineBlockBefore(block, op, blockArgs);
rewriter.replaceOp(op, results);
rewriter.eraseOp(terminator);
}
void PrimIfOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// If the condition is constant, delete the dead branch and inline the live
// branch.
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
auto constantBool =
op.getCondition().getDefiningOp<Torch::ConstantBoolOp>();
if (!constantBool)
return rewriter.notifyMatchFailure(op, "non-constant condition");
replaceOpWithRegion(rewriter, op,
constantBool.getValue() ? op.getThenRegion()
: op.getElseRegion());
return success();
});
// If the thenRegion and elseRegion yield the same Value's, then use those
// directly.
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
auto trueTerminator = op.getThenRegion().front().getTerminator();
auto falseTerminator = op.getElseRegion().front().getTerminator();
bool madeChange = false;
SmallVector<int> resultsToErase;
for (auto t : llvm::zip(trueTerminator->getOperands(),
falseTerminator->getOperands(), op->getResults())) {
auto trueVal = std::get<0>(t);
auto falseVal = std::get<1>(t);
auto resultToBeReplaced = std::get<2>(t);
if (trueVal == falseVal) {
madeChange |= !resultToBeReplaced.use_empty();
resultToBeReplaced.replaceAllUsesWith(trueVal);
}
}
// We leave it up to a separate pattern (not yet implemented) to erase the
// results that are now dead. That transformation is independently useful,
// and also pretty tricky to implement because it changes the number of
// results.
return success(madeChange);
});
// Erase any dead results.
patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) {
llvm::BitVector resultsToErase(op.getNumResults());
for (auto result : llvm::enumerate(op->getResults())) {
if (result.value().use_empty())
resultsToErase.set(result.index());
}
// If no results have uses and there are no side effects, just erase the op.
// Approximate the body having no side effects by checking if it is just a
// terminator.
// Note: We don't want to make this logic too fancy, because in general,
// checking for recursive side effects can result in a quadratic amount of
// work (N nested If's each resulting in O(N) work). It should probably be
// split into its own pattern if we want to make it fancier.
if (resultsToErase.all() &&
llvm::hasSingleElement(op.getThenRegion().front()) &&
llvm::hasSingleElement(op.getElseRegion().front())) {
rewriter.eraseOp(op);
return success();
}
// If there are no results to erase, we're done.
if (!resultsToErase.any())
return failure();
SmallVector<Type> newResultTypes;
for (int i = 0, e = op->getNumResults(); i < e; ++i) {
if (resultsToErase[i])
continue;
newResultTypes.push_back(op->getResult(i).getType());
}
auto newIf = rewriter.create<PrimIfOp>(op->getLoc(), newResultTypes,
op.getCondition());
rewriter.inlineRegionBefore(op.getThenRegion(), newIf.getThenRegion(),
newIf.getThenRegion().end());
rewriter.inlineRegionBefore(op.getElseRegion(), newIf.getElseRegion(),
newIf.getElseRegion().end());
newIf.getThenRegion().front().getTerminator()->eraseOperands(
resultsToErase);
newIf.getElseRegion().front().getTerminator()->eraseOperands(
resultsToErase);
SmallVector<Value> replacementValues;
for (int i = 0, e = op->getNumResults(), nextNewValue = 0; i < e; ++i) {
if (resultsToErase[i])
replacementValues.push_back(nullptr);
else
replacementValues.push_back(newIf->getResult(nextNewValue++));
}
rewriter.replaceOp(op, replacementValues);
return success();
});
}
//===----------------------------------------------------------------------===//
// RuntimeAssertOp
//===----------------------------------------------------------------------===//
void RuntimeAssertOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](RuntimeAssertOp op, PatternRewriter &rewriter) {
bool value;
if (!matchPattern(op.getCondition(), m_TorchConstantBool(&value)))
return failure();
if (value) {
rewriter.eraseOp(op);
return success();
}
// Even if the condition is statically false, the assert might never be
// executed.
return failure();
});
}
//===----------------------------------------------------------------------===//
// DerefineOp
//===----------------------------------------------------------------------===//
bool DerefineOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return isValidSubtype(inputs[0], outputs[0]);
}
OpFoldResult DerefineOp::fold(FoldAdaptor adaptor) {
auto uncheckedCast = getOperand().getDefiningOp<PrimUncheckedCastOp>();
if (!uncheckedCast)
return nullptr;
if (uncheckedCast.getOperand().getType() == getType())
return uncheckedCast.getOperand();
return nullptr;
}
void DerefineOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](DerefineOp op, PatternRewriter &rewriter) {
bool madeChange = false;
for (OpOperand &use : llvm::make_early_inc_range(op->getUses())) {
if (use.getOwner()->hasTrait<OpTrait::AllowsTypeRefinement>()) {
use.set(op.getOperand());
madeChange = true;
}
}
return success(madeChange);
});
}
static OpFoldResult atenIsOrIsNotFoldHelper(Operation *op, bool equalIsTrue) {
Value lhs = op->getOperand(0);
Value rhs = op->getOperand(1);
// Look through DerefineOp's to get more refined static information.
if (auto derefine = lhs.getDefiningOp<DerefineOp>())
lhs = derefine.getOperand();
if (auto derefine = rhs.getDefiningOp<DerefineOp>())
rhs = derefine.getOperand();
Type lhsType = lhs.getType();
Type rhsType = rhs.getType();
// If either type is a NoneType, make it be the lhsType.
if (isa<Torch::NoneType>(rhsType)) {
std::swap(lhsType, rhsType);
std::swap(lhs, rhs);
}
// For now, check a few specific cases.
// If both types are the singleton `!torch.none` type, then we don't even need
// to look at the values.
if (isa<Torch::NoneType>(lhsType) && isa<Torch::NoneType>(rhsType))
return IntegerAttr::get(IntegerType::get(op->getContext(), 1), equalIsTrue);
// If neither type is a subtype of the other, then the result is false.
// TODO: Implement and use subtype infra for this.
// For now, check a specific case.
// If the rhs is not OptionalType, then we know it cannot be None.
if (isa<Torch::NoneType>(lhsType) && !isa<Torch::OptionalType>(rhsType)) {
return IntegerAttr::get(IntegerType::get(op->getContext(), 1),
!equalIsTrue);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__RangeLengthOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__RangeLengthOp::fold(FoldAdaptor adaptor) {
auto lo = adaptor.getLo();
auto hi = adaptor.getHi();
auto step = adaptor.getStep();
if (!lo || !hi || !step)
return nullptr;
auto loInt = dyn_cast_or_null<IntegerAttr>(lo).getValue();
auto hiInt = dyn_cast_or_null<IntegerAttr>(hi).getValue();
auto stepInt = dyn_cast_or_null<IntegerAttr>(step).getValue();
// TODO: Implement folding for negative steps.
if (stepInt.isNegative())
return nullptr;
// From Python language spec:
// r[i] = lo + step*i such that i >= 0 and r[i] < hi
// So maximize `i` such that lo + step * i < hi
// ==> i == ceildiv(hi - lo, step)
return IntegerAttr::get(cast<TypedAttr>(lo).getType(),
llvm::APIntOps::RoundingSDiv(hiInt - loInt, stepInt,
APInt::Rounding::UP));
}
//===----------------------------------------------------------------------===//
// Aten__DeriveIndexOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__DeriveIndexOp::fold(FoldAdaptor adaptor) {
auto index = adaptor.getIndex();
auto start = adaptor.getStart();
auto step = adaptor.getStep();
if (!index || !start || !step)
return nullptr;
auto indexInt = dyn_cast_or_null<IntegerAttr>(index).getValue();
auto startInt = dyn_cast_or_null<IntegerAttr>(start).getValue();
auto stepInt = dyn_cast_or_null<IntegerAttr>(step).getValue();
return IntegerAttr::get(cast<TypedAttr>(index).getType(),
startInt + stepInt * indexInt);
}
//===----------------------------------------------------------------------===//
// Aten__Is__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Is__Op::fold(FoldAdaptor adaptor) {
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/true);
}
//===----------------------------------------------------------------------===//
// Aten__Isnot__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Isnot__Op::fold(FoldAdaptor adaptor) {
return atenIsOrIsNotFoldHelper(*this, /*equalIsTrue=*/false);
}
//===----------------------------------------------------------------------===//
// Aten__Not__Op
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Not__Op::fold(FoldAdaptor adaptor) {
bool value;
if (!matchPattern(getOperand(), m_TorchConstantBool(&value)))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 1), !value);
}
//===----------------------------------------------------------------------===//
// AtenNeBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeBoolOp::fold(FoldAdaptor adaptor) {
if (getOperand(0) == getOperand(1))
return IntegerAttr::get(IntegerType::get(getContext(), 1), false);
bool a, b;
if (!matchPattern(getOperand(0), m_TorchConstantBool(&a)))
return nullptr;
if (!matchPattern(getOperand(1), m_TorchConstantBool(&b)))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 1), a != b);
}
//===----------------------------------------------------------------------===//
// AtenUnsqueezeOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenUnsqueezeOp::fold(FoldAdaptor adaptor) {
auto selfTy = dyn_cast<BaseTensorType>(getSelf().getType());
auto rty = dyn_cast<BaseTensorType>(getType());
if (!rty.hasDtype())
return {};
if (auto attr = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf())) {
auto aty = dyn_cast<RankedTensorType>(attr.getType());
if (rty.hasSizes() && rty.areAllSizesKnown() && attr.isSplat()) {
auto naty = RankedTensorType::get(rty.getSizes(), aty.getElementType());
return DenseElementsAttr::get(naty, attr.getSplatValue<Attribute>());
}
}
if (getSelf().getType() != getResult().getType())
return nullptr;
if (selfTy && rty) {
if (selfTy.hasSizes() && rty.hasSizes() &&
selfTy.getSizes().size() == rty.getSizes().size())
return getSelf();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenSqueezeOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqueezeOp::fold(FoldAdaptor adaptor) {
auto selfTy = dyn_cast<BaseTensorType>(getSelf().getType());
auto rty = dyn_cast<BaseTensorType>(getType());
if (!rty.hasDtype())
return {};
if (auto attr = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf())) {
auto aty = dyn_cast<RankedTensorType>(attr.getType());
if (rty.hasSizes() && rty.areAllSizesKnown() && attr.isSplat()) {
auto naty = RankedTensorType::get(rty.getSizes(), aty.getElementType());
return DenseElementsAttr::get(naty, attr.getSplatValue<Attribute>());
}
}
if (getSelf().getType() != getResult().getType())
return nullptr;
if (selfTy && rty) {
if (selfTy.hasSizes() && rty.hasSizes() &&
selfTy.getSizes().size() == rty.getSizes().size())
return getSelf();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenSqueezeDimOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqueezeDimOp::fold(FoldAdaptor adaptor) {
if (getOperand(0).getType() != getResult().getType())
return nullptr;
if (auto tensorType = dyn_cast<BaseTensorType>(getOperand(0).getType())) {
if (tensorType.hasSizes() && tensorType.getSizes().size() == 0)
return getOperand(0);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenToDtypeOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenToDtypeOp::fold(FoldAdaptor adaptor) {
bool nonBlocking, copyArg;
// The non_blocking arg must be `False`.
if (!matchPattern(getNonBlocking(), m_TorchConstantBool(&nonBlocking)) ||
nonBlocking)
return nullptr;
// The copy arg must be `False`.
if (!matchPattern(getCopy(), m_TorchConstantBool(&copyArg)) || copyArg)
return nullptr;
// The memory_format arg must be `none`.
if (!isa<Torch::NoneType>(getMemoryFormat().getType()))
return nullptr;
auto inputType = cast<BaseTensorType>(getSelf().getType());
auto resType = cast<BaseTensorType>(getType());
// If the types aren't equal, then we can't fold.
if (inputType != resType)
return nullptr;
// If the type does not have a statically known dtype, then we cannot fold.
// For example, folding `tensor<*,unk>` to `tensor<*,unk>` would be wrong,
// since the `unk` could be dynamically different for the operand and result.
if (!inputType.hasDtype())
return nullptr;
// Fold when both the input tensor and result are of the same type.
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenToDtypeLayoutOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenToDtypeLayoutOp::fold(FoldAdaptor adaptor) {
// The pin_memory arg should be either constant `False` or `none`.
if (!isa<Torch::NoneType>(getPinMemory().getType())) {
bool pinMemory;
if (!matchPattern(getPinMemory(), m_TorchConstantBool(&pinMemory)))
return nullptr;
else if (pinMemory)
return nullptr;
}
// The non_blocking arg should be constant `False`.
bool nonBlocking;
if (!matchPattern(getNonBlocking(), m_TorchConstantBool(&nonBlocking)))
return nullptr;
else if (nonBlocking)
return nullptr;
// The copy arg should be constant `False`.
bool copyArg;
if (!matchPattern(getCopy(), m_TorchConstantBool(&copyArg)))
return nullptr;
else if (copyArg)
return nullptr;
// The device arg must be `none`.
if (!isa<Torch::NoneType>(getDevice().getType()))
return nullptr;
// The memory_format arg must be `none`.
if (!isa<Torch::NoneType>(getMemoryFormat().getType()))
return nullptr;
auto inputType = cast<BaseTensorType>(getSelf().getType());
auto resType = cast<BaseTensorType>(getType());
// If the types aren't equal, then we can't fold.
if (inputType != resType)
return nullptr;
// If the type does not have a statically known dtype, then we cannot fold.
// For example, folding `tensor<*,unk>` to `tensor<*,unk>` would be wrong,
// since the `unk` could be dynamically different for the operand and result.
if (!inputType.hasDtype())
return nullptr;
// The layout arg should be either `none` or `0` i.e. strided.
if (!isa<Torch::NoneType>(getLayout().getType())) {
int64_t tensorLayout;
if (!matchPattern(getLayout(), m_TorchConstantInt(&tensorLayout)))
return nullptr;
else if (tensorLayout != torch_upstream::Layout::Strided)
return nullptr;
}
// Fold when both the input tensor and result are of the same type and the
// layout arg is strided.
return getOperand(0);
}
void AtenToDtypeLayoutOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
// `to.dtype_layout` -> `to.device/to.dtype` if layout is none and pin memory
// is false
patterns.add(+[](AtenToDtypeLayoutOp op, PatternRewriter &rewriter) {
// The pin_memory arg should be either constant `False` or `none`.
if (!isa<Torch::NoneType>(op.getPinMemory().getType())) {
bool pinMemory;
if (!matchPattern(op.getPinMemory(), m_TorchConstantBool(&pinMemory)))
return failure();
else if (pinMemory)
return failure();
}
// The layout arg should be either `none` or `0` i.e. strided.
if (!isa<Torch::NoneType>(op.getLayout().getType())) {
int64_t tensorLayout;
if (!matchPattern(op.getLayout(), m_TorchConstantInt(&tensorLayout)))
return failure();
else if (tensorLayout != torch_upstream::Layout::Strided)
return failure();
}
if (isa<Torch::NoneType>(op.getDevice().getType())) {
// The device arg is `none`. Rewrite to to.dtype.
AtenToDtypeOp toDtype = rewriter.create<AtenToDtypeOp>(
op.getLoc(), op.getType(), op.getSelf(), op.getDtype(),
op.getNonBlocking(), op.getCopy(), op.getMemoryFormat());
rewriter.replaceOp(op, toDtype->getResults());
} else {
// The device arg is not `none`. Rewrite to to.device.
AtenToDeviceOp toDevice = rewriter.create<AtenToDeviceOp>(
op.getLoc(), op.getType(), op.getSelf(), op.getDevice(),
op.getDtype(), op.getNonBlocking(), op.getCopy(),
op.getMemoryFormat());
rewriter.replaceOp(op, toDevice->getResults());
}
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenToOtherOp
//===----------------------------------------------------------------------===//
void AtenToOtherOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// Canonicalize `aten.to.other` to `aten.to.device`
patterns.add(+[](AtenToOtherOp op, PatternRewriter &rewriter) {
auto lhs = op.getSelf();
auto rhs = op.getOther();
auto getRhsDevice = rewriter.create<PrimDeviceOp>(op.getLoc(), rhs);
auto getRhsDtype = rewriter.create<PrimDtypeOp>(op.getLoc(), rhs);
rewriter.replaceOpWithNewOp<AtenToDeviceOp>(
op, op.getType(), lhs, getRhsDevice.getResult(),
getRhsDtype.getResult(), op.getNonBlocking(), op.getCopy(),
op.getMemoryFormat());
return success();
});
}
//===----------------------------------------------------------------------===//
// Aten_CastFloatOp
//===----------------------------------------------------------------------===//
void Aten_CastFloatOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `aten.cast_float` -> `aten.to.dtype`
patterns.add(+[](Aten_CastFloatOp op, PatternRewriter &rewriter) {
auto self = op.getSelf();
auto loc = op.getLoc();
Value constNone = rewriter.create<ConstantNoneOp>(loc);
Value f32Type = rewriter.create<ConstantIntOp>(
loc, (int)torch_upstream::ScalarType::Float);
Value constFalse = rewriter.create<ConstantBoolOp>(loc, false);
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(op, op.getType(), self, f32Type,
op.getNonBlocking(), constFalse,
constNone);
return success();
});
}
//===----------------------------------------------------------------------===//
// Aten_CastLongOp
//===----------------------------------------------------------------------===//
void Aten_CastLongOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `aten.cast_long` -> `aten.to.dtype`
patterns.add(+[](Aten_CastLongOp op, PatternRewriter &rewriter) {
auto self = op.getSelf();
auto loc = op.getLoc();
Value constNone = rewriter.create<ConstantNoneOp>(loc);
Value longType = rewriter.create<ConstantIntOp>(
loc, (int)torch_upstream::ScalarType::Long);
Value constFalse = rewriter.create<ConstantBoolOp>(loc, false);
rewriter.replaceOpWithNewOp<AtenToDtypeOp>(op, op.getType(), self, longType,
op.getNonBlocking(), constFalse,
constNone);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenViewOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenViewOp::fold(FoldAdaptor adaptor) {
auto inputType = dyn_cast<BaseTensorType>(getOperand(0).getType());
if (!inputType || !inputType.hasSizes() || inputType.getSizes().size() != 1)
return nullptr;
auto resType = dyn_cast<BaseTensorType>(getType());
if (!resType || !resType.hasSizes() || resType.getSizes().size() != 1)
return nullptr;
if (inputType != resType)
return nullptr;
// Fold when both the input tensor and result are unity rank tensors.
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// PrimsViewOfOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimsViewOfOp::fold(FoldAdaptor adaptor) {
// Always fold the op with its only input operand.
return getOperand();
}
//===----------------------------------------------------------------------===//
// AtenDimOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDimOp::fold(FoldAdaptor adaptor) {
if (auto tensorType = dyn_cast<BaseTensorType>(getOperand().getType())) {
if (tensorType.hasSizes())
return IntegerAttr::get(IntegerType::get(getContext(), 64),
tensorType.getSizes().size());
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLenTOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLenTOp::fold(FoldAdaptor adaptor) {
// `len([1,1,1])` -> `3`, if it is not mutated.
if (auto listConstruct =
getOperand().getDefiningOp<Torch::PrimListConstructOp>()) {
if (!isListPotentiallyMutated(listConstruct)) {
return IntegerAttr::get(IntegerType::get(getContext(), 64),
listConstruct.getNumOperands());
}
}
return nullptr;
}
void AtenLenTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `len(t.size())` -> `t.ndim`
patterns.add(+[](AtenLenTOp op, PatternRewriter &rewriter) {
auto size = op.getOperand().getDefiningOp<AtenSizeOp>();
if (!size)
return rewriter.notifyMatchFailure(op, "operand not AtenSizeOp");
rewriter.replaceOpWithNewOp<AtenDimOp>(op, size.getOperand());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenMinOtherOp
//===----------------------------------------------------------------------===//
void AtenMinOtherOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `aten.min.other` -> `aten.minimum`
patterns.add(+[](AtenMinOtherOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenMinimumOp>(op, op.getType(), op.getSelf(),
op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenMaxOtherOp
//===----------------------------------------------------------------------===//
void AtenMaxOtherOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
// `aten.max.other` -> `aten.maximum`
patterns.add(+[](AtenMaxOtherOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenMaximumOp>(op, op.getType(), op.getSelf(),
op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenLenStrOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLenStrOp::fold(FoldAdaptor adaptor) {
if (auto stringConstruct = getS().getDefiningOp<ConstantStrOp>())
return getI64IntegerAttr(getContext(),
stringConstruct.getValueAttr().getValue().size());
return nullptr;
}
LogicalResult rewrite0DBinaryTensorOp(Operation *op,
PatternRewriter &rewriter) {
Location loc = op->getLoc();
// This canonicalization pattern also includes aten div/mul/add/sub ops
// between tensor and scalar, like aten.add.Scalar op
if (op->getNumOperands() < 2) {
return failure();
}
auto lhs = getScalarIntValue(op->getOperand(0), loc, rewriter);
auto rhs = getScalarIntValue(op->getOperand(1), loc, rewriter);
auto outType = op->getResult(0).getType();
if (!lhs || !rhs) {
return rewriter.notifyMatchFailure(
op, "only int scalar lhs or rhs is supported");
}
if (isa<AtenSubTensorOp, AtenSubScalarOp, AtenRsubScalarOp, AtenAddTensorOp,
AtenAddScalarOp>(op)) {
Value alpha = getScalarIntValue(op->getOperand(2), loc, rewriter);
if (!alpha) {
return rewriter.notifyMatchFailure(op,
"only int scalar alpha is supported");
}
if (isa<AtenRsubScalarOp>(op))
lhs = rewriter.create<AtenMulIntOp>(loc, lhs, alpha);
else
rhs = rewriter.create<AtenMulIntOp>(loc, rhs, alpha);
}
if (isa<AtenDivTensorModeOp, AtenDivScalarModeOp>(op)) {
if (isa<Torch::NoneType>(op->getOperand(2).getType())) {
// None rounding mode
Value quotient = rewriter.create<AtenDivOp>(loc, lhs, rhs);
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
quotient);
return success();
}
std::string roundingMode;
if (!matchPattern(op->getOperand(2), m_TorchConstantStr(roundingMode))) {
return rewriter.notifyMatchFailure(
op, "only None, 'floor' or 'trunc' rounding mode is supported");
}
if (roundingMode == "floor") {
Value quotient = rewriter.create<AtenFloordivIntOp>(loc, lhs, rhs);
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
quotient);
return success();
}
// For "trunc" rounding mode, insted of canonicalizing it into
// aten.abs, aten.floor, aten.sign and aten.mul.int ops, which adds
// complexity but helps little in optimization (such as constant folding),
// we are trying to fold it.
if (roundingMode == "trunc") {
int64_t lhsInt;
int64_t rhsInt;
if (!matchPattern(lhs, m_TorchConstantInt(&lhsInt))) {
return failure();
}
if (!matchPattern(rhs, m_TorchConstantInt(&rhsInt))) {
return failure();
}
int64_t result = (int64_t)std::trunc((double)lhsInt / rhsInt);
Value resultScalar = rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(result));
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType,
resultScalar);
return success();
}
return failure();
}
Value result;
// Other Add/Sub/Mul ops
if (isa<AtenAddTensorOp, AtenAddScalarOp>(op)) {
result = rewriter.create<AtenAddIntOp>(loc, lhs, rhs);
} else if (isa<AtenSubScalarOp, AtenSubTensorOp>(op)) {
result = rewriter.create<AtenSubIntOp>(loc, lhs, rhs);
} else if (isa<AtenRsubScalarOp>(op)) {
result = rewriter.create<AtenSubIntOp>(loc, rhs, lhs);
} else if (isa<AtenMulScalarOp, AtenMulTensorOp>(op)) {
result = rewriter.create<AtenMulIntOp>(loc, lhs, rhs);
}
rewriter.replaceOpWithNewOp<PrimNumToTensorScalarOp>(op, outType, result);
return success();
}
//===----------------------------------------------------------------------===//
// NAry folder helpers
//===----------------------------------------------------------------------===//
static bool checkSameDTypes(llvm::ArrayRef<Attribute> attrs) {
bool allFp = true;
bool allInt = true;
for (auto attr : attrs) {
if (!attr)
return false;
Type attrty;
if (auto dense = dyn_cast_or_null<ElementsAttr>(attr))
attrty = dense.getType();
if (auto fp = dyn_cast_or_null<mlir::FloatAttr>(attr))
attrty = fp.getType();
if (auto integer = dyn_cast_or_null<mlir::IntegerAttr>(attr))
attrty = integer.getType();
if (auto shaped = dyn_cast_or_null<ShapedType>(attrty))
attrty = shaped.getElementType();
allFp &= isa<mlir::FloatType>(attrty);
allInt &= isa<mlir::IntegerType>(attrty);
}
return allFp || allInt;
}
static bool checkAllSplats(llvm::ArrayRef<Attribute> attrs) {
for (auto attr : attrs) {
if (auto dense = dyn_cast_or_null<ElementsAttr>(attr)) {
if (!dense.isSplat())
return false;
}
}
return true;
}
llvm::SmallVector<double> getFoldValueAtIndexFp(llvm::ArrayRef<Attribute> attrs,
int64_t idx = 0) {
llvm::SmallVector<double> splattrs;
for (auto attr : attrs) {
if (auto dense = dyn_cast<ElementsAttr>(attr)) {
if (dense.isSplat()) {
splattrs.push_back(dense.getSplatValue<APFloat>().convertToDouble());
} else {
splattrs.push_back(dense.getValues<APFloat>()[idx].convertToDouble());
}
} else if (auto intattr = dyn_cast<FloatAttr>(attr)) {
splattrs.push_back(intattr.getValueAsDouble());
} else {
return {};
}
}
return splattrs;
}
llvm::SmallVector<APInt> getFoldValueAtIndexInt(llvm::ArrayRef<Attribute> attrs,
int64_t bitwidth,
int64_t idx = 0) {
llvm::SmallVector<APInt> splattrs;
for (auto attr : attrs) {
// Note that i1 is neither signed nor unsigned.
// But we should trait i1 as unsigned, otherwise that
// APInt(1,1).getSExtValue() return allOnes 64-bit integer.
// So here only distinguish signed integer.
bool isSigned = false;
if (auto dense = dyn_cast<ElementsAttr>(attr)) {
isSigned = dyn_cast<IntegerType>(dense.getElementType()).isSigned();
if (dense.isSplat()) {
splattrs.push_back(dense.getSplatValue<APInt>());
} else {
splattrs.push_back(dense.getValues<APInt>()[idx]);
}
} else if (auto intattr = dyn_cast<IntegerAttr>(attr)) {
isSigned = cast<IntegerType>(intattr.getType()).isSigned();
splattrs.push_back(intattr.getValue());
} else {
return {};
}
auto &apint = splattrs.back();
if (apint.getBitWidth() < bitwidth) {
if (isSigned) {
apint = apint.sextOrTrunc(bitwidth);
} else {
apint = apint.zextOrTrunc(bitwidth);
}
}
}
return splattrs;
}
using NAryFoldFpOperator = std::function<double(ArrayRef<double>)>;
using NAryFoldIntOperator = std::function<APInt(ArrayRef<APInt>)>;
static OpFoldResult naryFolderHelper(ArrayRef<Attribute> operands, Type ty,
NAryFoldFpOperator fpFolder,
NAryFoldIntOperator intFolder) {
constexpr int64_t maxFold = 16;
if (!checkSameDTypes(operands))
return nullptr;
auto resultTy = dyn_cast<ValueTensorType>(ty);
if (!resultTy || !resultTy.hasDtype() || !resultTy.hasSizes())
return nullptr;
auto dty = resultTy.getDtype();
auto resultBTy = resultTy.toBuiltinTensor().clone(dty);
auto fpTy = dyn_cast<mlir::FloatType>(dty);
auto intTy = dyn_cast<mlir::IntegerType>(dty);
if (!fpTy && !intTy)
return nullptr;
bool allSplats = checkAllSplats(operands);
bool withinMaxFold =
resultBTy.hasStaticShape() && resultBTy.getNumElements() <= maxFold;
if (!allSplats && !withinMaxFold)
return nullptr;
// We do not support broadcasting in the non-splat case so validate same
// shaped inputs / outputs:
if (!allSplats) {
auto resultShape = resultBTy.getShape();
for (int i = 0, s = operands.size(); i < s; ++i) {
if (auto dense = dyn_cast<DenseElementsAttr>(operands[i])) {
if (dense.isSplat())
continue;
auto operandShape = cast<ShapedType>(dense.getType()).getShape();
if (operandShape.size() != resultShape.size())
return nullptr;
for (int i = 0, s = operandShape.size(); i < s; ++i)
if (operandShape[i] != resultShape[i])
return nullptr;
}
}
}
const int64_t numValues = allSplats ? 1 : resultBTy.getNumElements();
if (fpTy) {
llvm::SmallVector<APFloat> folded;
for (int i = 0, s = numValues; i < s; ++i) {
auto inputs = getFoldValueAtIndexFp(operands, i);
double fold = fpFolder(inputs);
APFloat val(fold);
bool unused;
val.convert(fpTy.getFloatSemantics(), APFloat::rmNearestTiesToEven,
&unused);
folded.push_back(val);
}
return DenseElementsAttr::get(resultBTy, folded);
}
if (intTy) {
llvm::SmallVector<APInt> folded;
for (int i = 0, s = numValues; i < s; ++i) {
auto inputs =
getFoldValueAtIndexInt(operands, dty.getIntOrFloatBitWidth(), i);
folded.push_back(intFolder(inputs));
}
return DenseElementsAttr::get(resultBTy, folded);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenAddTensorOp
//===----------------------------------------------------------------------===//
void AtenAddTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenAddTensorOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
OpFoldResult AtenAddTensorOp::fold(FoldAdaptor adaptor) {
auto fpFold = [](llvm::ArrayRef<double> inputs) {
assert(inputs.size() == 3);
return inputs[0] + (inputs[1] * inputs[2]);
};
auto intFold = [](llvm::ArrayRef<APInt> inputs) {
assert(inputs.size() == 3);
return inputs[0] + (inputs[1] * inputs[2]);
};
return naryFolderHelper(adaptor.getOperands(), getType(), fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenAddScalarOp
//===----------------------------------------------------------------------===//
void AtenAddScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenAddScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
OpFoldResult AtenAddScalarOp::fold(FoldAdaptor adaptor) {
auto fpFold = [](llvm::ArrayRef<double> inputs) {
assert(inputs.size() == 3);
return inputs[0] + (inputs[1] * inputs[2]);
};
auto intFold = [](llvm::ArrayRef<APInt> inputs) {
assert(inputs.size() == 3);
int64_t bits = inputs[0].getBitWidth();
APInt other(bits, inputs[1].getLimitedValue());
APInt alpha(bits, inputs[2].getLimitedValue());
return inputs[0] + (other * alpha);
};
return naryFolderHelper(adaptor.getOperands(), getType(), fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenSubTensorOp
//===----------------------------------------------------------------------===//
void AtenSubTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSubTensorOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
OpFoldResult AtenSubTensorOp::fold(FoldAdaptor adaptor) {
auto fpFold = [](llvm::ArrayRef<double> inputs) {
assert(inputs.size() == 3);
return inputs[0] - (inputs[1] * inputs[2]);
};
auto intFold = [](llvm::ArrayRef<APInt> inputs) {
assert(inputs.size() == 3);
return inputs[0] - (inputs[1] * inputs[2]);
};
return naryFolderHelper(adaptor.getOperands(), getType(), fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenSubScalarOp
//===----------------------------------------------------------------------===//
void AtenSubScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSubScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
OpFoldResult AtenSubScalarOp::fold(FoldAdaptor adaptor) {
auto fpFold = [](llvm::ArrayRef<double> inputs) {
assert(inputs.size() == 3);
return inputs[0] - (inputs[1] * inputs[2]);
};
auto intFold = [](llvm::ArrayRef<APInt> inputs) {
assert(inputs.size() == 3);
int64_t bits = inputs[0].getBitWidth();
APInt other(bits, inputs[1].getLimitedValue());
APInt alpha(bits, inputs[2].getLimitedValue());
return inputs[0] - (other * alpha);
};
return naryFolderHelper(adaptor.getOperands(), getType(), fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenRSubScalarOp
//===----------------------------------------------------------------------===//
void AtenRsubScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenRsubScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenMulTensorOp
//===----------------------------------------------------------------------===//
void AtenMulTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenMulTensorOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
OpFoldResult AtenMulTensorOp::fold(FoldAdaptor adaptor) {
auto fpFold = [](llvm::ArrayRef<double> inputs) {
assert(inputs.size() == 2);
return inputs[0] * inputs[1];
};
auto intFold = [](llvm::ArrayRef<APInt> inputs) {
assert(inputs.size() == 2);
int64_t bits = inputs[0].getBitWidth();
APInt other(bits, inputs[1].getLimitedValue());
return inputs[0] * other;
};
return naryFolderHelper(adaptor.getOperands(), getType(), fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenEqTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqTensorOp::fold(FoldAdaptor adaptor) {
constexpr int64_t kMaxFold = 16;
auto ty = dyn_cast<ValueTensorType>(getType());
if (!ty || !ty.hasDtype() || !ty.hasSizes())
return nullptr;
auto bty = ty.toBuiltinTensor().clone(ty.getDtype());
if (!bty.hasStaticShape())
return nullptr;
if (getSelf() == getOther())
return DenseElementsAttr::get(bty,
IntegerAttr::get(bty.getElementType(), 1));
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto other = dyn_cast_or_null<DenseElementsAttr>(adaptor.getOther());
if (!self || !other)
return nullptr;
auto selfTy = dyn_cast<ShapedType>(self.getType());
auto otherTy = dyn_cast<ShapedType>(other.getType());
if (!selfTy || !otherTy ||
selfTy.getElementType() != otherTy.getElementType())
return nullptr;
// If both values are splats we can just compute the output value as a splat.
if (self.isSplat() && other.isSplat()) {
if (isa<mlir::FloatType>(selfTy.getElementType())) {
APFloat lhsFp = self.getSplatValue<APFloat>();
APFloat rhsFp = other.getSplatValue<APFloat>();
bool eq = lhsFp.compare(rhsFp) == APFloat::cmpEqual;
return DenseElementsAttr::get(bty, eq);
}
if (isa<mlir::IntegerType>(selfTy.getElementType())) {
APInt lhsInt = self.getSplatValue<APInt>();
APInt rhsInt = other.getSplatValue<APInt>();
bool eq = lhsInt == rhsInt;
return DenseElementsAttr::get(bty, eq);
}
return nullptr;
}
if (selfTy != otherTy || bty.getNumElements() > kMaxFold)
return nullptr;
if (isa<mlir::FloatType>(selfTy.getElementType())) {
auto extract = [bty](DenseElementsAttr attr) {
llvm::SmallVector<APFloat> vals;
if (attr.isSplat()) {
vals.resize(bty.getNumElements(), attr.getSplatValue<APFloat>());
return vals;
}
for (auto fp : attr.getValues<APFloat>()) {
vals.push_back(fp);
}
return vals;
};
llvm::SmallVector<APFloat> lhsFp = extract(self);
llvm::SmallVector<APFloat> rhsFp = extract(other);
llvm::SmallVector<bool> vals(bty.getNumElements());
for (int i = 0, s = bty.getNumElements(); i < s; ++i) {
vals[i] = lhsFp[i].compare(rhsFp[i]) == APFloat::cmpEqual;
}
return DenseElementsAttr::get(bty, vals);
}
if (isa<mlir::IntegerType>(selfTy.getElementType())) {
auto extract = [bty](DenseElementsAttr attr) {
llvm::SmallVector<APInt> vals;
if (attr.isSplat()) {
vals.resize(bty.getNumElements(), attr.getSplatValue<APInt>());
return vals;
}
for (auto fp : attr.getValues<APInt>()) {
vals.push_back(fp);
}
return vals;
};
llvm::SmallVector<APInt> lhsInt = extract(self);
llvm::SmallVector<APInt> rhsInt = extract(other);
llvm::SmallVector<bool> vals(bty.getNumElements());
for (int i = 0, s = bty.getNumElements(); i < s; ++i) {
vals[i] = lhsInt[i] == rhsInt[i];
}
return DenseElementsAttr::get(bty, vals);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLeScalarOp
//===----------------------------------------------------------------------===//
using ComparisonFoldFpOperator = std::function<bool(double, double)>;
using ComparisonFoldIntOperator = std::function<bool(APInt, APInt, bool)>;
static OpFoldResult comparisonScaleFolder(DenseElementsAttr lhs, Attribute rhs,
ValueTensorType resultTy,
ComparisonFoldFpOperator fpFolder,
ComparisonFoldIntOperator intFolder) {
constexpr int64_t kMaxFold = 16;
if (!lhs || !rhs || !resultTy)
return nullptr;
if (!resultTy.hasSizes() || !resultTy.hasDtype())
return nullptr;
for (auto size : resultTy.getSizes())
if (size == Torch::kUnknownSize)
return nullptr;
auto ctx = lhs.getContext();
auto resultETy = resultTy.getDtype();
auto tensorETy = cast<RankedTensorType>(lhs.getType()).getElementType();
if (lhs.isSplat()) {
if (auto intAttr = dyn_cast<IntegerAttr>(rhs)) {
auto unsign = cast<IntegerType>(tensorETy).isUnsigned();
auto scalarAP = intAttr.getValue();
auto tensorAP = lhs.getSplatValue<IntegerAttr>().getValue();
tensorAP = APInt(
scalarAP.getBitWidth(),
unsign ? tensorAP.getZExtValue() : tensorAP.getSExtValue(), !unsign);
auto resultBool = intFolder(tensorAP, scalarAP, unsign);
auto resultAP = IntegerAttr::get(IntegerType::get(ctx, 1), resultBool);
return DenseElementsAttr::get(resultTy.toBuiltinTensor().clone(resultETy),
resultAP);
}
if (auto floatAttr = dyn_cast<FloatAttr>(rhs)) {
APFloat scalarAP = floatAttr.getValue();
APFloat tensorAP = lhs.getSplatValue<FloatAttr>().getValue();
auto resultBool =
fpFolder(tensorAP.convertToDouble(), scalarAP.convertToDouble());
auto resultAP = IntegerAttr::get(IntegerType::get(ctx, 1), resultBool);
return DenseElementsAttr::get(resultTy.toBuiltinTensor().clone(resultETy),
resultAP);
}
return nullptr;
}
int64_t count = 1;
for (auto size : resultTy.getSizes())
count *= size;
if (count > kMaxFold)
return nullptr;
if (auto intAttr = dyn_cast<IntegerAttr>(rhs)) {
auto unsign = cast<IntegerType>(tensorETy).isUnsigned();
llvm::SmallVector<bool> values;
for (auto tensorAP : lhs.getValues<APInt>()) {
auto scalarAP = intAttr.getValue();
tensorAP = APInt(
scalarAP.getBitWidth(),
unsign ? tensorAP.getZExtValue() : tensorAP.getSExtValue(), !unsign);
auto resultBool = intFolder(tensorAP, scalarAP, unsign);
values.push_back(resultBool);
}
return DenseElementsAttr::get(resultTy.toBuiltinTensor().clone(resultETy),
values);
}
if (auto floatAttr = dyn_cast<FloatAttr>(rhs)) {
llvm::SmallVector<bool> values;
for (auto tensorAP : lhs.getValues<APFloat>()) {
APFloat scalarAP = floatAttr.getValue();
auto resultBool =
fpFolder(tensorAP.convertToDouble(), scalarAP.convertToDouble());
values.push_back(resultBool);
}
return DenseElementsAttr::get(resultTy.toBuiltinTensor().clone(resultETy),
values);
}
return nullptr;
}
OpFoldResult AtenLeScalarOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto other = adaptor.getOther();
auto resultTy = dyn_cast<ValueTensorType>(getType());
auto fpFold = [](double lhs, double rhs) -> bool { return lhs <= rhs; };
auto intFold = [](APInt lhs, APInt rhs, bool unsign) -> bool {
int64_t bits = std::max(lhs.getBitWidth(), rhs.getBitWidth());
APInt lhsWiden(bits, lhs.getLimitedValue());
APInt rhsWiden(bits, rhs.getLimitedValue());
return unsign ? lhsWiden.ule(rhsWiden) : lhsWiden.sle(rhsWiden);
};
return comparisonScaleFolder(self, other, resultTy, fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenLtScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLtScalarOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto other = adaptor.getOther();
auto resultTy = dyn_cast<ValueTensorType>(getType());
auto fpFold = [](double lhs, double rhs) -> bool { return lhs < rhs; };
auto intFold = [](APInt lhs, APInt rhs, bool unsign) -> bool {
int64_t bits = std::max(lhs.getBitWidth(), rhs.getBitWidth());
APInt lhsWiden(bits, lhs.getLimitedValue());
APInt rhsWiden(bits, rhs.getLimitedValue());
return unsign ? lhsWiden.ult(rhsWiden) : lhsWiden.slt(rhsWiden);
};
return comparisonScaleFolder(self, other, resultTy, fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenGtScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGtScalarOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto other = adaptor.getOther();
auto resultTy = dyn_cast<ValueTensorType>(getType());
auto fpFold = [](double lhs, double rhs) -> bool { return lhs > rhs; };
auto intFold = [](APInt lhs, APInt rhs, bool unsign) -> bool {
int64_t bits = std::max(lhs.getBitWidth(), rhs.getBitWidth());
APInt lhsWiden(bits, lhs.getLimitedValue());
APInt rhsWiden(bits, rhs.getLimitedValue());
return unsign ? lhsWiden.ugt(rhsWiden) : lhsWiden.sgt(rhsWiden);
};
return comparisonScaleFolder(self, other, resultTy, fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenGeScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGeScalarOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto other = adaptor.getOther();
auto resultTy = dyn_cast<ValueTensorType>(getType());
auto fpFold = [](double lhs, double rhs) -> bool { return lhs >= rhs; };
auto intFold = [](APInt lhs, APInt rhs, bool unsign) -> bool {
int64_t bits = std::max(lhs.getBitWidth(), rhs.getBitWidth());
APInt lhsWiden(bits, lhs.getLimitedValue());
APInt rhsWiden(bits, rhs.getLimitedValue());
return unsign ? lhsWiden.uge(rhsWiden) : lhsWiden.sge(rhsWiden);
};
return comparisonScaleFolder(self, other, resultTy, fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenEqScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqScalarOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto other = adaptor.getOther();
auto resultTy = dyn_cast<ValueTensorType>(getType());
auto fpFold = [](double lhs, double rhs) -> bool { return lhs == rhs; };
auto intFold = [](APInt lhs, APInt rhs, bool unsign) -> bool {
int64_t bits = std::max(lhs.getBitWidth(), rhs.getBitWidth());
APInt lhsWiden(bits, lhs.getLimitedValue());
APInt rhsWiden(bits, rhs.getLimitedValue());
return lhsWiden.eq(rhsWiden);
};
return comparisonScaleFolder(self, other, resultTy, fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenNeScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeScalarOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto other = adaptor.getOther();
auto resultTy = dyn_cast<ValueTensorType>(getType());
auto fpFold = [](double lhs, double rhs) -> bool { return lhs != rhs; };
auto intFold = [](APInt lhs, APInt rhs, bool unsign) -> bool {
int64_t bits = std::max(lhs.getBitWidth(), rhs.getBitWidth());
APInt lhsWiden(bits, lhs.getLimitedValue());
APInt rhsWiden(bits, rhs.getLimitedValue());
return lhsWiden.ne(rhsWiden);
};
return comparisonScaleFolder(self, other, resultTy, fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenLogOp
//===----------------------------------------------------------------------===//
using UnaryPromoteFpOperator = std::function<double(double)>;
using UnaryPromoteIntOperator = std::function<double(APInt, bool)>;
static OpFoldResult unaryPromoteFolder(DenseElementsAttr operand,
ValueTensorType resultTy,
UnaryPromoteFpOperator fpFolder,
UnaryPromoteIntOperator intFolder) {
constexpr int64_t kMaxFold = 16;
if (!resultTy.hasDtype() || !resultTy.hasSizes())
return nullptr;
if (!isa<mlir::FloatType>(resultTy.getDtype()))
return nullptr;
auto fpTy = dyn_cast<mlir::FloatType>(operand.getType().getElementType());
auto intTy = dyn_cast<mlir::IntegerType>(operand.getType().getElementType());
if (!fpTy && !intTy)
return nullptr;
auto resultBTy = resultTy.toBuiltinTensor().clone(resultTy.getDtype());
bool splat = operand.isSplat();
bool withinMaxFold =
resultBTy.hasStaticShape() && resultBTy.getNumElements() <= kMaxFold;
if (!splat && !withinMaxFold)
return nullptr;
const int64_t numValues = splat ? 1 : resultBTy.getNumElements();
llvm::SmallVector<Attribute> operands = {operand};
llvm::SmallVector<APFloat> folded;
for (int i = 0, s = numValues; i < s; ++i) {
double fold = 0.0;
if (fpTy) {
auto inputs = getFoldValueAtIndexFp(operands, i);
fold = fpFolder(inputs[0]);
}
if (intTy) {
auto inputs =
getFoldValueAtIndexInt(operands, intTy.getIntOrFloatBitWidth(), i);
fold = intFolder(inputs[0], intTy.isSigned());
}
APFloat val(fold);
bool unused;
val.convert(
cast<mlir::FloatType>(resultBTy.getElementType()).getFloatSemantics(),
APFloat::rmNearestTiesToEven, &unused);
folded.push_back(val);
}
return DenseElementsAttr::get(resultBTy, folded);
}
OpFoldResult AtenLogOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto resultType = dyn_cast<ValueTensorType>(getType());
if (!self || !resultType)
return nullptr;
// Note that i1 is neither signed nor unsigned.
// But we should trait i1 as unsigned, otherwise that
// APInt(1,1).getSExtValue() return allOnes 64-bit integer.
auto intFold = [](APInt a, bool isSigned) -> double {
if (isSigned)
return std::log(a.getSExtValue());
else
return std::log(a.getZExtValue());
};
auto fpFold = [](double a) -> double { return std::log(a); };
return unaryPromoteFolder(self, resultType, fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenFloorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloorOp::fold(FoldAdaptor adaptor) {
auto resultType = dyn_cast<ValueTensorType>(getType());
if (resultType && resultType.hasDtype() &&
isa<mlir::IntegerType>(resultType.getDtype())) {
return getSelf();
}
return {};
}
//===----------------------------------------------------------------------===//
// AtenCeilOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCeilOp::fold(FoldAdaptor adaptor) {
auto resultType = dyn_cast<ValueTensorType>(getType());
if (resultType && resultType.hasDtype() &&
isa<mlir::IntegerType>(resultType.getDtype())) {
return getSelf();
}
return {};
}
//===----------------------------------------------------------------------===//
// AtenRoundOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenRoundOp::fold(FoldAdaptor adaptor) {
auto resultType = dyn_cast<ValueTensorType>(getType());
if (resultType && resultType.hasDtype() &&
isa<mlir::IntegerType>(resultType.getDtype())) {
return getSelf();
}
return {};
}
//===----------------------------------------------------------------------===//
// AtenTruncOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenTruncOp::fold(FoldAdaptor adaptor) {
auto resultType = dyn_cast<ValueTensorType>(getType());
if (resultType && resultType.hasDtype() &&
resultType.getDtype().isa<mlir::IntegerType>()) {
return getSelf();
}
return {};
}
//===----------------------------------------------------------------------===//
// AtenSignOp
//===----------------------------------------------------------------------===//
void AtenSignOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSignOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenSgnOp>(op, op.getType(), op.getSelf());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenMulScalarOp
//===----------------------------------------------------------------------===//
void AtenMulScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenMulScalarOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
OpFoldResult AtenMulScalarOp::fold(FoldAdaptor adaptor) {
auto fpFold = [](llvm::ArrayRef<double> inputs) {
assert(inputs.size() == 2);
return inputs[0] * inputs[1];
};
auto intFold = [](llvm::ArrayRef<APInt> inputs) {
assert(inputs.size() == 2);
return inputs[0] * inputs[1];
};
return naryFolderHelper(adaptor.getOperands(), getType(), fpFold, intFold);
}
//===----------------------------------------------------------------------===//
// AtenDivTensorModeOp
//===----------------------------------------------------------------------===//
void AtenDivTensorModeOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenDivTensorModeOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenDivScalarModeOp
//===----------------------------------------------------------------------===//
void AtenDivScalarModeOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenDivScalarModeOp op, PatternRewriter &rewriter) {
return rewrite0DBinaryTensorOp(op, rewriter);
});
}
//===----------------------------------------------------------------------===//
// AtenNumelOp
//===----------------------------------------------------------------------===//
void AtenNumelOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenNumelOp op, PatternRewriter &rewriter) {
auto inputType = dyn_cast<BaseTensorType>(op.getSelf().getType());
if (!inputType || !inputType.areAllSizesKnown()) {
return failure();
}
auto sizes = inputType.getSizes();
int64_t numel = 1;
for (int64_t d : sizes) {
numel *= d;
}
rewriter.replaceOpWithNewOp<ConstantIntOp>(
op, rewriter.getI64IntegerAttr(numel));
return success();
});
}
//===----------------------------------------------------------------------===//
// Aten__Or__TensorOp
//===----------------------------------------------------------------------===//
void Aten__Or__TensorOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Aten__Or__TensorOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenBitwiseOrTensorOp>(
op, op.getType(), op.getSelf(), op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// Aten__And__ScalarOp
//===----------------------------------------------------------------------===//
void Aten__And__ScalarOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Aten__And__ScalarOp op, PatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<AtenBitwiseAndScalarOp>(
op, op.getType(), op.getSelf(), op.getOther());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenScalarImplicitOp
//===----------------------------------------------------------------------===//
void AtenScalarImplicitOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenScalarImplicitOp op, PatternRewriter &rewriter) {
Location loc = op.getLoc();
Value a = op.getA();
auto outType = op.getResult().getType();
Value scalarIntValue = getScalarIntValue(a, loc, rewriter);
if (scalarIntValue) {
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(op, outType,
scalarIntValue);
return success();
}
Value scalarFloatValue = getScalarFloatValue(a, loc, rewriter);
if (scalarFloatValue) {
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(op, outType,
scalarFloatValue);
return success();
}
return failure();
});
}
//===----------------------------------------------------------------------===//
// AtenFloatImplicitOp
//===----------------------------------------------------------------------===//
void AtenFloatImplicitOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenFloatImplicitOp op, PatternRewriter &rewriter) {
Location loc = op.getLoc();
Value a = op.getA();
Value scalarValue = getScalarFloatValue(a, loc, rewriter);
if (!scalarValue)
return failure();
rewriter.replaceOp(op, scalarValue);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenIntImplicitOp
//===----------------------------------------------------------------------===//
void AtenIntImplicitOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenIntImplicitOp op, PatternRewriter &rewriter) {
Location loc = op.getLoc();
Value a = op.getA();
Value scalarValue = getScalarIntValue(a, loc, rewriter);
if (!scalarValue)
return failure();
rewriter.replaceOp(op, scalarValue);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenSizeOp
//===----------------------------------------------------------------------===//
// Traces at most 6 parents of `value` to determine the tensor type with known
// dimension size or returns failure if such a type was not found. If `dim` is
// `None`, then all dimension's sizes must be known.
static FailureOr<BaseTensorType>
traceKnownSizeTensorType(Value value, std::optional<int64_t> dim) {
// Function to check if we found a type that contains the queried information.
auto foundType = [](BaseTensorType tensorType, std::optional<int64_t>(dim)) {
if (!tensorType.hasSizes())
return false;
if (dim == std::nullopt)
return tensorType.areAllSizesKnown();
// If the dimension value is negative, then convert it to a positive value.
ArrayRef<int64_t> sizes = tensorType.getSizes();
*dim = toPositiveDim(*dim, sizes.size());
return isValidDim(*dim, sizes.size()) && sizes[*dim] != kUnknownSize;
};
// Limit the loop count to 6 to avoid indefinite compilation times from
// unbounded IR traversals.
for (auto idx = 0; idx < 6; ++idx) {
if (!value || !value.getType().isa<BaseTensorType>())
return failure();
auto tensorType = cast<BaseTensorType>(value.getType());
if (foundType(tensorType, dim))
return tensorType;
auto op = value.getDefiningOp();
if (!op || !isa<CopyToValueTensorOp, CopyToNonValueTensorOp,
TensorStaticInfoCastOp>(op))
return failure();
// In all ops of interest to us, the source tensor is operand #0.
value = op->getOperand(0);
}
return failure();
}
void AtenSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
auto type = traceKnownSizeTensorType(op.getOperand(), std::nullopt);
if (failed(type))
return rewriter.notifyMatchFailure(op, "all sizes not known");
SmallVector<Value> listElements;
for (int64_t size : type->getSizes()) {
listElements.push_back(rewriter.create<Torch::ConstantIntOp>(
op->getLoc(), rewriter.getI64IntegerAttr(size)));
}
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(
op, Torch::ListType::get(rewriter.getType<Torch::IntType>()),
listElements);
return success();
});
// One-off pattern to erase if dead.
// TODO: Use the effects infra to express the semantics of this op and enable
// a centralized "erase if dead" canonicalization.
// Specifically, we need to mark the op as only MemoryEffects::Allocate
// so that `mlir::wouldOpBeTriviallyDead` does the right thing.
patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) {
if (!op.use_empty())
return failure();
rewriter.eraseOp(op);
return failure();
});
}
//===----------------------------------------------------------------------===//
// AtenSelectIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSelectIntOp::fold(FoldAdaptor adaptor) {
auto self = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto ty = dyn_cast<ValueTensorType>(getType());
if (!self || !ty || !ty.hasDtype() || !ty.hasSizes())
return nullptr;
auto selfTy = cast<ShapedType>(self.getType());
auto bty = ty.toBuiltinTensor().clone(ty.getDtype());
if (!bty.hasStaticShape())
return nullptr;
if (self.isSplat())
return DenseElementsAttr::get(bty, self.getSplatValue<Attribute>());
auto dimAttr = dyn_cast_or_null<IntegerAttr>(adaptor.getDim());
auto indexAttr = dyn_cast_or_null<IntegerAttr>(adaptor.getIndex());
if (!dimAttr || !indexAttr || bty.getNumElements() != 1)
return nullptr;
auto dim = dimAttr.getInt();
auto index = indexAttr.getInt();
for (int i = 0, s = selfTy.getRank(); i < s; ++i) {
if (i != dim && selfTy.getDimSize(i) != 1)
return nullptr;
}
auto splattr = self.getValues<Attribute>()[index];
return DenseElementsAttr::get(bty, splattr);
}
//===----------------------------------------------------------------------===//
// AtenSizeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSizeIntOp::fold(FoldAdaptor adaptor) {
int64_t dim;
if (!matchPattern(this->getDim(), m_TorchConstantInt(&dim)))
return nullptr;
auto type = traceKnownSizeTensorType(this->getSelf(), dim);
if (failed(type))
return nullptr;
ArrayRef<int64_t> sizes = type->getSizes();
dim = toPositiveDim(dim, sizes.size());
if (!isValidDim(dim, sizes.size()))
return nullptr;
return IntegerAttr::get(IntegerType::get(getContext(), 64), sizes[dim]);
}
//===----------------------------------------------------------------------===//
// AtenGtIntOp
//===----------------------------------------------------------------------===//
static IntegerAttr getI1IntegerAttr(MLIRContext *context, bool value) {
return IntegerAttr::get(IntegerType::get(context, 1),
static_cast<int64_t>(value));
}
using ConstantFloatComparator = std::function<bool(double, double)>;
template <typename OpTy>
static OpFoldResult
floatComparatorFoldHelper(OpTy op, ConstantFloatComparator comparator) {
if (op.getOperand(0) == op.getOperand(1))
return getI1IntegerAttr(op.getContext(), comparator(0, 0));
double lhs, rhs;
if (!matchPattern(op.getOperand(0), m_TorchConstantFloat(&lhs)) ||
!matchPattern(op.getOperand(1), m_TorchConstantFloat(&rhs)))
return nullptr;
return getI1IntegerAttr(op.getContext(), comparator(lhs, rhs));
}
//===----------------------------------------------------------------------===//
// AtenLtFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLtFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a < b; });
}
//===----------------------------------------------------------------------===//
// AtenGtFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGtFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a > b; });
}
//===----------------------------------------------------------------------===//
// AtenGeFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGeFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a >= b; });
}
//===----------------------------------------------------------------------===//
// AtenEqFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqFloatOp::fold(FoldAdaptor adaptor) {
return floatComparatorFoldHelper(*this,
[](double a, double b) { return a == b; });
}
using ConstantIntComparator = std::function<bool(int64_t, int64_t)>;
template <typename OpTy>
static OpFoldResult intComparatorFoldHelper(OpTy op,
ConstantIntComparator comparator) {
Value lhsValue = op->getOperand(0);
Value rhsValue = op->getOperand(1);
if (lhsValue == rhsValue)
return getI1IntegerAttr(op.getContext(), comparator(0, 0));
int64_t lhs, rhs;
bool lhsIsConstant = matchPattern(lhsValue, m_TorchConstantInt(&lhs));
bool rhsIsConstant = matchPattern(rhsValue, m_TorchConstantInt(&rhs));
if (lhsIsConstant && rhsIsConstant)
return getI1IntegerAttr(op.getContext(), comparator(lhs, rhs));
// Ensure that if there is a constant, it is on the right.
if (lhsIsConstant && !rhsIsConstant) {
std::swap(lhs, rhs);
std::swap(lhsValue, rhsValue);
std::swap(lhsIsConstant, rhsIsConstant);
auto newComparator = [comparator](int64_t lhs, int64_t rhs) {
return comparator(rhs, lhs);
};
comparator = newComparator;
}
// Fold comparisons of AtenSizeIntOp against negative values.
// AtenSizeIntOp is known to always be non-negative.
if (rhsIsConstant && rhs < 0) {
// We can return `comparator(0, -1)` here because of the property:
// If x >= 0 && y < 0, then:
// - cmp(x, y) == cmp(x + 1, y)
// - cmp(x, y) == cmp(x, y - 1)
// By induction all cases here are covered.
if (auto size = lhsValue.getDefiningOp<AtenSizeIntOp>())
return getI1IntegerAttr(op->getContext(), comparator(0, -1));
}
// Fold comparisons of AtenSizeIntOp against 0:
// - torch.aten.size.int >= 0 ==> True.
// - torch.aten.size.int < 0 ==> False.
// (and the operand-swapped versions of the above)
if (rhsIsConstant && rhs == 0) {
if (auto size = lhsValue.getDefiningOp<AtenSizeIntOp>()) {
// >= 0 comparison.
if (comparator(0, 0) && comparator(1, 0))
return getI1IntegerAttr(op->getContext(), true);
// < 0 comparison.
if (!comparator(0, 0) && comparator(-1, 0) && !comparator(1, 0))
return getI1IntegerAttr(op->getContext(), false);
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenDetachOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDetachOp::fold(FoldAdaptor adaptor) {
if (getSelf().getType() != getResult().getType())
return {};
return getSelf();
}
//===----------------------------------------------------------------------===//
// AtenNeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a != b; });
}
//===----------------------------------------------------------------------===//
// AtenEqIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a == b; });
}
//===----------------------------------------------------------------------===//
// AtenEqStrOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqStrOp::fold(FoldAdaptor adaptor) {
if (getOperand(0) == getOperand(1))
return getI1IntegerAttr(getContext(), true);
auto aStr = adaptor.getA();
auto bStr = adaptor.getB();
if (aStr && bStr)
return getI1IntegerAttr(getContext(), aStr == bStr);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenNeStrOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNeStrOp::fold(FoldAdaptor adaptor) {
if (getOperand(0) == getOperand(1))
return getI1IntegerAttr(getContext(), false);
auto aStr = adaptor.getA();
auto bStr = adaptor.getB();
if (aStr && bStr)
return getI1IntegerAttr(getContext(), aStr != bStr);
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Contains__StrListOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Contains__StrListOp::fold(FoldAdaptor adaptor) {
StringAttr item = dyn_cast<StringAttr>(adaptor.getItem());
if (!item)
return nullptr;
if (auto listConstruct = getL().getDefiningOp<Torch::PrimListConstructOp>()) {
if (isListPotentiallyMutated(listConstruct))
return nullptr;
}
llvm::SmallVector<std::string> strs;
if (matchPattern(getL(), m_TorchListOfConstantStrs(strs))) {
for (const auto &str : strs) {
if (item.getValue().str() == str)
return getI1IntegerAttr(getContext(), true);
}
return getI1IntegerAttr(getContext(), false);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenLtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLtIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a < b; });
}
//===----------------------------------------------------------------------===//
// AtenLeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenLeIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a <= b; });
}
//===----------------------------------------------------------------------===//
// AtenGtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGtIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a > b; });
}
//===----------------------------------------------------------------------===//
// AtenGeIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenGeIntOp::fold(FoldAdaptor adaptor) {
return intComparatorFoldHelper(*this,
[](int64_t a, int64_t b) { return a >= b; });
}
//===----------------------------------------------------------------------===//
// AtenBoolFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenBoolFloatOp::fold(FoldAdaptor adaptor) {
double c;
if (matchPattern(getOperand(), m_TorchConstantFloat(&c)))
return getI1IntegerAttr(getContext(), c != 0.0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenBoolIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenBoolIntOp::fold(FoldAdaptor adaptor) {
int64_t c;
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
return getI1IntegerAttr(getContext(), c != 0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenAnyBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAnyBoolOp::fold(FoldAdaptor adaptor) {
auto inputConstruct = getSelf().getDefiningOp<Torch::PrimListConstructOp>();
if (!inputConstruct || isListPotentiallyMutated(inputConstruct))
return nullptr;
// If any operand is a constant true, return true.
for (auto operand : inputConstruct.getOperands()) {
bool b = false;
if (matchPattern(operand, m_TorchConstantBool(&b)) && b) {
return getI1IntegerAttr(getContext(), true);
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenFloatScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloatScalarOp::fold(FoldAdaptor adaptor) {
// Constant fold int -> float conversion.
if (auto integerAttr = adaptor.getA().dyn_cast_or_null<IntegerAttr>()) {
return FloatAttr::get(
mlir::Float64Type::get(getContext()),
static_cast<double>(integerAttr.getValue().getSExtValue()));
}
// If the input is float type already, the op is an identity.
if (getType() == getOperand().getType())
return getOperand();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenIntFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIntFloatOp::fold(FoldAdaptor adaptor) {
// Constant fold float -> int conversion.
if (auto floatAttr = adaptor.getA().dyn_cast_or_null<FloatAttr>()) {
return IntegerAttr::get(
mlir::IntegerType::get(getContext(), 64),
static_cast<int64_t>(floatAttr.getValue().convertToDouble()));
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenIntScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIntScalarOp::fold(FoldAdaptor adaptor) {
// Constant fold float -> int conversion.
if (auto floatAttr = adaptor.getA().dyn_cast_or_null<FloatAttr>()) {
return IntegerAttr::get(
mlir::IntegerType::get(getContext(), 64),
static_cast<long>(floatAttr.getValue().convertToDouble()));
}
// If the input is int type already, the op is an identity.
if (getType() == getOperand().getType())
return getOperand();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenIntBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIntBoolOp::fold(FoldAdaptor adaptor) {
bool b;
if (matchPattern(getOperand(), m_TorchConstantBool(&b))) {
return getI64IntegerAttr(getContext(), static_cast<long>(b));
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenMaskedFillTensorOp
//===----------------------------------------------------------------------===//
// Fold 0d fill tensor to scalar
void AtenMaskedFillTensorOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenMaskedFillTensorOp op, PatternRewriter &rewriter) {
auto scalarIntVal =
getScalarIntValue(op.getValue(), op->getLoc(), rewriter);
auto scalarFloatVal =
getScalarFloatValue(op.getValue(), op->getLoc(), rewriter);
if (!scalarIntVal && !scalarFloatVal)
return failure();
Value scalarVal = scalarIntVal ? scalarIntVal : scalarFloatVal;
rewriter.replaceOpWithNewOp<AtenMaskedFillScalarOp>(
op, op.getType(), op.getSelf(), op.getMask(), scalarVal);
return failure();
});
}
//===----------------------------------------------------------------------===//
// AtenCloneOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCloneOp::fold(FoldAdaptor adaptor) {
// note: memory_format would be ignored
if (llvm::dyn_cast<ValueTensorType>(getSelf().getType())) {
// self should have value semantics
return getSelf();
}
return {};
}
//===----------------------------------------------------------------------===//
// AtenSortIntOp
//===----------------------------------------------------------------------===//
void AtenSortIntOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSortIntOp op, PatternRewriter &rewriter) {
SmallVector<int64_t> listElements;
if (!matchPattern(op.getSelf(), m_TorchListOfConstantInts(listElements)))
return rewriter.notifyMatchFailure(
op, "all input list elements must be constant ints");
bool reverse;
if (!matchPattern(op.getReverse(), m_TorchConstantBool(&reverse)))
return rewriter.notifyMatchFailure(
op, "Expected reverse arg to be constant bool.");
std::sort(listElements.begin(), listElements.end());
if (reverse)
std::reverse(listElements.begin(), listElements.end());
SmallVector<Value> sortedListElements;
for (int64_t elem : listElements)
sortedListElements.push_back(rewriter.create<Torch::ConstantIntOp>(
op->getLoc(), rewriter.getI64IntegerAttr(elem)));
Value result = rewriter.create<Torch::PrimListConstructOp>(
op->getLoc(), Torch::ListType::get(rewriter.getType<Torch::IntType>()),
sortedListElements);
op.getSelf().replaceAllUsesWith(result);
rewriter.eraseOp(op);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenSortOp
//===----------------------------------------------------------------------===//
LogicalResult AtenSortOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
auto operand = getSelf();
auto operandType = dyn_cast<BaseTensorType>(operand.getType());
if (!operandType || !operandType.hasSizes())
return failure();
// only ValueTensorType has toBuiltinTensor
auto indicesTensorType = dyn_cast<ValueTensorType>(getResult(1).getType());
if (!indicesTensorType)
return failure();
if (!indicesTensorType.hasDtype())
return failure();
auto indicesType =
indicesTensorType.toBuiltinTensor().clone(indicesTensorType.getDtype());
if (!indicesType || !indicesType.hasStaticShape())
return failure();
bool unaryDim = false;
IntegerAttr dimAttribute = dyn_cast_if_present<IntegerAttr>(adaptor.getDim());
if (!dimAttribute)
return failure();
int64_t dimInt = dimAttribute.getValue().getSExtValue();
if (dimInt < 0)
dimInt += operandType.getSizes().size();
if (dimAttribute) {
unaryDim = operandType.getSizes()[dimInt] == 1;
}
OpBuilder builder(getContext());
if (unaryDim || llvm::all_of(operandType.getSizes(),
[](int64_t dim) { return dim == 1; })) {
results.push_back(operand);
results.push_back(DenseElementsAttr::get(
indicesType, builder.getZeroAttr(indicesType.getElementType())));
return success();
}
return failure();
}
//===----------------------------------------------------------------------===//
// NonValueTensorLiteralOp
//===----------------------------------------------------------------------===//
LogicalResult NonValueTensorLiteralOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto attr = properties.as<Properties *>()
->getValue()
.dyn_cast_or_null<ElementsAttr>();
if (!attr)
return failure();
RankedTensorType tensorType = cast<RankedTensorType>(attr.getType());
NonValueTensorType returnType =
NonValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
tensorType.getElementType());
inferredReturnTypes.push_back(returnType);
return success();
}
static bool areSizesAndDtypesCompatible(BaseTensorType a, BaseTensorType b) {
if (a.hasSizes() && b.hasSizes()) {
if (failed(verifyCompatibleShape(makeShapeLLVMCompatible(a.getSizes()),
makeShapeLLVMCompatible(b.getSizes()))))
return false;
}
if (a.hasDtype() && b.hasDtype()) {
if (a.getDtype() != b.getDtype())
return false;
}
return true;
}
bool NonValueTensorLiteralOp::isCompatibleReturnTypes(TypeRange inferred,
TypeRange actual) {
if (!actual[0].isa<BaseTensorType>())
return false;
return areSizesAndDtypesCompatible(inferred[0].cast<BaseTensorType>(),
actual[0].cast<BaseTensorType>());
}
//===----------------------------------------------------------------------===//
// ValueTensorLiteralOp
//===----------------------------------------------------------------------===//
LogicalResult ValueTensorLiteralOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto attr = properties.as<Properties *>()
->getValue()
.dyn_cast_or_null<ElementsAttr>();
if (!attr)
return failure();
RankedTensorType tensorType = cast<RankedTensorType>(attr.getType());
ValueTensorType returnType =
ValueTensorType::get(tensorType.getContext(), tensorType.getShape(),
tensorType.getElementType());
inferredReturnTypes.push_back(returnType);
return success();
}
OpFoldResult ValueTensorLiteralOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
//----------------------------------------------------------------------------//
// TensorStaticInfoCast
//----------------------------------------------------------------------------//
bool TensorStaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return areSizesAndDtypesCompatible(inputs[0].cast<BaseTensorType>(),
outputs[0].cast<BaseTensorType>());
}
void TensorStaticInfoCastOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](TensorStaticInfoCastOp op, PatternRewriter &rewriter) {
auto reverseCast =
op.getOperand().getDefiningOp<Torch::TensorStaticInfoCastOp>();
if (!reverseCast || reverseCast.getOperand().getType() != op.getType())
return failure();
rewriter.replaceOp(op, reverseCast.getOperand());
return success();
});
patterns.add(+[](TensorStaticInfoCastOp op, PatternRewriter &rewriter) {
if (isValidSubtype(op.getOperand().getType(), op.getType())) {
SmallVector<std::reference_wrapper<OpOperand>> usesToChange(
llvm::make_filter_range(op->getUses(), [](OpOperand &operand) {
return operand.getOwner()
->hasTrait<mlir::torch::Torch::OpTrait::AllowsTypeRefinement>();
}));
if (usesToChange.empty())
return failure();
for (OpOperand &use : usesToChange) {
Operation *user = use.getOwner();
user->setOperand(use.getOperandNumber(), op.getOperand());
}
return success();
}
return failure();
});
}
//===----------------------------------------------------------------------===//
// CopyToNonValueTensorOp
//===----------------------------------------------------------------------===//
LogicalResult CopyToNonValueTensorOp::verify() {
auto resultType = cast<BaseTensorType>(getResult().getType());
auto operandType = cast<BaseTensorType>(getOperand().getType());
if (!resultType.hasSameSizesAndDtype(operandType))
return emitError() << "operand and result must have same sizes and dtype";
return success();
}
LogicalResult CopyToNonValueTensorOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto resultType = cast<ValueTensorType>(operands[0].getType());
inferredReturnTypes.push_back(resultType.getWithoutValueSemantics());
return success();
}
void CopyToNonValueTensorOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Allocate::get(), getResult());
}
//===----------------------------------------------------------------------===//
// CopyToValueTensorOp
//===----------------------------------------------------------------------===//
LogicalResult CopyToValueTensorOp::verify() {
auto resultType = cast<BaseTensorType>(getResult().getType());
auto operandType = cast<BaseTensorType>(getOperand().getType());
if (!resultType.hasSameSizesAndDtype(operandType))
return emitError() << "operand and result must have same sizes and dtype";
return success();
}
LogicalResult CopyToValueTensorOp::inferReturnTypes(
MLIRContext *context, std::optional<Location> location, ValueRange operands,
DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
auto resultType = cast<NonValueTensorType>(operands[0].getType());
inferredReturnTypes.push_back(resultType.getWithValueSemantics());
return success();
}
void CopyToValueTensorOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
effects.emplace_back(MemoryEffects::Read::get(), getOperand());
}
//===----------------------------------------------------------------------===//
// ConstantNoneOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstantNoneOp::fold(FoldAdaptor adaptor) {
return TypeAttr::get(Torch::NoneType::get(getContext()));
}
void ConstantNoneOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "none");
}
//===----------------------------------------------------------------------===//
// ConstantStrOp
//===----------------------------------------------------------------------===//
OpFoldResult ConstantStrOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }
void ConstantStrOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), "str");
}
//===----------------------------------------------------------------------===//
// ConstantDeviceOp
//===----------------------------------------------------------------------===//
void ConstantDeviceOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), getValue());
}
//===----------------------------------------------------------------------===//
// ConstantIntOp
//===----------------------------------------------------------------------===//
ParseResult ConstantIntOp::parse(OpAsmParser &parser, OperationState &result) {
Builder builder(result.getContext());
result.addTypes(builder.getType<Torch::IntType>());
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
int64_t value;
if (parser.parseInteger(value))
return failure();
result.addAttribute("value", builder.getI64IntegerAttr(value));
return success();
}
void ConstantIntOp::print(OpAsmPrinter &p) {
p << " ";
p << getValueAttr().getInt();
p.printOptionalAttrDict((*this)->getAttrs(), {"value"});
}
OpFoldResult Torch::ConstantIntOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantIntOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
SmallVector<char> buf;
llvm::raw_svector_ostream os(buf);
os << "int" << getValueAttr().getInt();
setNameFn(getResult(), os.str());
}
//===----------------------------------------------------------------------===//
// ConstantFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantFloatOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantFloatOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
// Calculate a stringified version of the number, compatible with MLIR
// identifier syntax. (in practice, this just removes the '+' from 'e+' in
// float string representation).
SmallVector<char> buf;
getValue().toString(buf, /*FormatPrecision=*/6, /*FormatMaxPadding=*/0,
/*TruncateZero=*/false);
auto isValidMLIRIdentifierChar = [](char c) {
return isalpha(c) || isdigit(c) || c == '_' || c == '$' || c == '.' ||
c == '-';
};
auto numberStr = llvm::to_vector<16>(
llvm::make_filter_range(buf, isValidMLIRIdentifierChar));
// Construct the identifier string.
buf.clear();
llvm::append_range(buf, StringRef("float"));
llvm::append_range(buf, numberStr);
setNameFn(getResult(), StringRef(buf.data(), buf.size()));
}
//===----------------------------------------------------------------------===//
// ConstantNumberOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantNumberOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantNumberOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Torch::ConstantNumberOp op, PatternRewriter &rewriter) {
Location loc = op->getLoc();
Value constValue;
Attribute value = op.getValueAttr();
if (auto floatValue = dyn_cast<mlir::FloatAttr>(value)) {
constValue = rewriter.create<Torch::ConstantFloatOp>(loc, floatValue);
} else if (auto intValue = dyn_cast<mlir::IntegerAttr>(value)) {
constValue = rewriter.create<Torch::ConstantIntOp>(loc, intValue);
} else {
return failure();
}
rewriter.replaceOpWithNewOp<Torch::DerefineOp>(op, op.getType(),
constValue);
return success();
});
}
//===----------------------------------------------------------------------===//
// ConstantBoolOp
//===----------------------------------------------------------------------===//
OpFoldResult Torch::ConstantBoolOp::fold(FoldAdaptor adaptor) {
return getValueAttr();
}
void Torch::ConstantBoolOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
setNameFn(getResult(), getValue() ? "true" : "false");
}
//===----------------------------------------------------------------------===//
// PrimUncheckedCastOp
//===----------------------------------------------------------------------===//
bool PrimUncheckedCastOp::areCastCompatible(mlir::TypeRange inputs,
mlir::TypeRange outputs) {
return isValidSubtype(outputs[0], inputs[0]);
}
OpFoldResult PrimUncheckedCastOp::fold(FoldAdaptor adaptor) {
if (auto derefineOp = getX().getDefiningOp<Torch::DerefineOp>()) {
if (derefineOp.getOperand().getType() == getType())
return derefineOp.getOperand();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Getitem__TOp
//===----------------------------------------------------------------------===//
void Aten__Getitem__TOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
auto torchList = op.getOperand(0);
if (isListPotentiallyMutated(torchList))
return failure();
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
if (!listConstruct)
return failure();
// Get the index, but be careful because it might be statically invalid.
std::optional<int64_t> indexOpt = matchLegalConstantIndexIntoListOfSize(
op.getOperand(1), listConstruct.getNumOperands());
if (!indexOpt)
return rewriter.notifyMatchFailure(op, "statically invalid index");
rewriter.replaceOp(op, {listConstruct.getOperand(*indexOpt)});
return success();
});
patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) {
auto sizeOp = op.getList().getDefiningOp<AtenSizeOp>();
if (!sizeOp)
return failure();
// This assumes tht the size doesn't change between the
// AtenSizeOp and the Aten__Getitem__TOp.
// `t_` is the only op I can find that changes the shape in-place. It seems
// like otherwise we can treat the size of a tensor as having value
// semantics. The other view-like ops don't have in-place variants --
// they always return a new SSA value that is aliased to the input.
// Can we have a pass to normalize the `t_` case and then elsewhere in the
// compiler treat the size as having value semantics?
// There's a small number of such ops, and they are marked as `inplace_view`
// in PyTorch's `native_functions.yaml` file.
rewriter.replaceOpWithNewOp<AtenSizeIntOp>(op, sizeOp.getSelf(),
op.getIdx());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenIsFloatingPointOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIsFloatingPointOp::fold(FoldAdaptor adaptor) {
auto operandType = dyn_cast<BaseTensorType>(getSelf().getType());
if (!operandType)
return nullptr;
if (operandType.hasDtype()) {
bool isFloatType = operandType.getDtype().isa<mlir::FloatType>();
return IntegerAttr::get(IntegerType::get(getContext(), 1), isFloatType);
}
// doesn't has dtype
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenAddTOp
//===----------------------------------------------------------------------===//
void AtenAddTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenAddTOp op, PatternRewriter &rewriter) {
auto lhsListConstruct =
op.getA().getDefiningOp<Torch::PrimListConstructOp>();
if (!lhsListConstruct || isListPotentiallyMutated(lhsListConstruct))
return failure();
auto rhsListConstruct =
op.getB().getDefiningOp<Torch::PrimListConstructOp>();
if (!rhsListConstruct || isListPotentiallyMutated(rhsListConstruct))
return failure();
SmallVector<Value> concatenatedList;
for (auto a : lhsListConstruct.getOperands()) {
concatenatedList.push_back(a);
}
for (auto b : rhsListConstruct.getOperands()) {
concatenatedList.push_back(b);
}
rewriter.replaceOpWithNewOp<Torch::PrimListConstructOp>(op, op.getType(),
concatenatedList);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenSliceTOp
//===----------------------------------------------------------------------===//
void AtenSliceTOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenSliceTOp op, PatternRewriter &rewriter) {
auto valueList = op.getL();
auto listConstructOp = valueList.getDefiningOp<PrimListConstructOp>();
if (!listConstructOp || isListPotentiallyMutated(listConstructOp)) {
return failure();
}
SmallVector<Value> listElements =
llvm::to_vector<4>(listConstructOp.getElements());
int64_t size = static_cast<int64_t>(listElements.size());
int64_t start;
int64_t end;
int64_t step;
if (op.getStart().getType().isa<Torch::NoneType>()) {
start = 0;
} else if (!matchPattern(op.getStart(), m_TorchConstantInt(&start))) {
return failure();
}
if (op.getEnd().getType().isa<Torch::NoneType>()) {
end = listElements.size();
} else if (!matchPattern(op.getEnd(), m_TorchConstantInt(&end))) {
return failure();
}
if (!matchPattern(op.getStep(), m_TorchConstantInt(&step))) {
return failure();
}
start = start >= 0 ? start : start + size;
start = start >= 0 ? start : 0;
end = end >= 0 ? end : end + size;
end = end < size ? end : size;
SmallVector<Value> newListElements;
for (int64_t i = start; i < end; i += step) {
newListElements.push_back(listElements[i]);
}
rewriter.replaceOpWithNewOp<PrimListConstructOp>(
op, Torch::ListType::get(listElements[0].getType()), newListElements);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenEqIntListOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenEqIntListOp::fold(FoldAdaptor adaptor) {
auto lhsLiteral = getA().getDefiningOp<Torch::PrimListConstructOp>();
if (!lhsLiteral)
return nullptr;
auto rhsLiteral = getB().getDefiningOp<Torch::PrimListConstructOp>();
if (!rhsLiteral)
return nullptr;
// If the sizes don't match, then we know the lists aren't equal.
if (lhsLiteral.getNumOperands() != rhsLiteral.getNumOperands())
return getI1IntegerAttr(getContext(), false);
// If the sizes match and all corresponding list elements are the same Value,
// then we know the lists are equal.
// Note that we can't prove that the lists are not-equal with this method,
// since two different Value's might dynamically be equal.
if (llvm::all_of(
llvm::zip(lhsLiteral.getOperands(), rhsLiteral.getOperands()),
[](const auto &pair) {
return std::get<0>(pair) == std::get<1>(pair);
}))
return getI1IntegerAttr(getContext(), true);
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimTupleConstructOp
//===----------------------------------------------------------------------===//
LogicalResult PrimTupleConstructOp::verify() {
if (!(isValidSubtype(
Torch::TupleType::get(getContext(),
llvm::to_vector<6>(getElements().getType())),
getResult().getType())))
return emitOpError(
"failed to verify that contained types correspond to operand types");
return success();
}
//===----------------------------------------------------------------------===//
// PrimTupleIndexOp
//===----------------------------------------------------------------------===//
void PrimTupleIndexOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimTupleIndexOp op, PatternRewriter &rewriter) {
auto tupleConstruct =
op.getTup().getDefiningOp<Torch::PrimTupleConstructOp>();
if (!tupleConstruct)
return failure();
int64_t i;
if (!matchPattern(op.getI(), m_TorchConstantInt(&i)))
return failure();
if (i >= (int64_t)tupleConstruct.getElements().size())
return failure();
// TODO: We should have a clear picture of whether we want to consistently
// allow refinement, and where. It seems desirable to require precise
// type equality for TupleConstruct / TupleIndex, but that might break
// things.
Value replacement = tupleConstruct.getElements()[i];
if (replacement.getType() != op.getType()) {
if (op.getType().isa<BaseTensorType>()) {
replacement = rewriter.create<Torch::TensorStaticInfoCastOp>(
op.getLoc(), op.getType(), replacement);
} else {
return failure();
}
}
rewriter.replaceOp(op, replacement);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimUninitializedOp
//===----------------------------------------------------------------------===//
void PrimUninitializedOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](PrimUninitializedOp op, PatternRewriter &rewriter) {
if (!op.use_empty())
return failure();
rewriter.eraseOp(op);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimTupleUnpackOp
//===----------------------------------------------------------------------===//
void PrimTupleUnpackOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimTupleUnpackOp op, PatternRewriter &rewriter) {
auto tupleConstruct =
op.getTup().getDefiningOp<Torch::PrimTupleConstructOp>();
if (!tupleConstruct)
return failure();
llvm::SmallVector<Value> derefinedElements;
// The result types may be supertypes of the tuple element types.
// Ensure we maintain the exact type, with identity `derefine`s being
// folded.
for (auto [type, element] :
llvm::zip(op.getResultTypes(), tupleConstruct.getElements())) {
derefinedElements.push_back(
rewriter.createOrFold<DerefineOp>(op.getLoc(), type, element));
}
rewriter.replaceOp(op, derefinedElements);
return success();
});
}
//===----------------------------------------------------------------------===//
// PrimListUnpackOp
//===----------------------------------------------------------------------===//
void PrimListUnpackOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimListUnpackOp op, PatternRewriter &rewriter) {
auto torchList = op.getOperand();
if (isListPotentiallyMutated(torchList)) {
return failure();
}
auto listConstruct = torchList.getDefiningOp<Torch::PrimListConstructOp>();
if (!listConstruct)
return failure();
if (op->getNumResults() != listConstruct.getElements().size())
return failure();
rewriter.replaceOp(op, listConstruct.getElements());
return success();
});
}
static PrimDictConstructOp getDictConstructIfNotModified(Value torchDict) {
if (!llvm::all_of(torchDict.getUsers(), [](Operation *op) {
return isa<Aten__Getitem__DictStrOp, Aten__Contains__StrOp,
AtenKeysStrOp, AtenGetDefaultStrOp, PrimDictConstructOp>(op);
}))
return nullptr;
return torchDict.getDefiningOp<Torch::PrimDictConstructOp>();
}
//===----------------------------------------------------------------------===//
// Aten__Getitem__DictStrOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Getitem__DictStrOp::fold(FoldAdaptor adaptor) {
auto dictConstruct = getDictConstructIfNotModified(getSelf());
if (!dictConstruct)
return nullptr;
auto targetKey = getKey();
for (auto i : llvm::zip(dictConstruct.getKeys(), dictConstruct.getValues())) {
auto k = std::get<0>(i);
if (k == targetKey)
return std::get<1>(i);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Contains__StrOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten__Contains__StrOp::fold(FoldAdaptor adaptor) {
auto dictConstruct = getDictConstructIfNotModified(getDict());
if (!dictConstruct)
return nullptr;
auto targetKey = getKey();
for (auto key : dictConstruct.getKeys()) {
if (key == targetKey)
return getI1IntegerAttr(getContext(), true);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten__Contains__IntListOp
//===----------------------------------------------------------------------===//
static bool isListConstructNotModified(Value torchList) {
return llvm::all_of(torchList.getUsers(), [](Operation *op) {
return isa<Aten__Contains__IntListOp>(op);
});
}
OpFoldResult Aten__Contains__IntListOp::fold(FoldAdaptor adaptor) {
auto itemConstruct = getItem();
if (!isListConstructNotModified(getL()))
return nullptr;
int64_t item;
SmallVector<int64_t> list;
if (!matchPattern(itemConstruct, m_TorchConstantInt(&item)))
return nullptr;
if (!matchPattern(getL(), m_TorchListOfConstantInts(list)))
return nullptr;
for (auto elem : list) {
if (elem == item)
return getI1IntegerAttr(getContext(), true);
}
return getI1IntegerAttr(getContext(), false);
}
using BinaryIntOperatorFn = std::function<int64_t(int64_t, int64_t)>;
static OpFoldResult
atenBinaryIntOperatorFoldHelper(ArrayRef<Attribute> operands,
BinaryIntOperatorFn f) {
auto intLhs = operands[0].dyn_cast_or_null<IntegerAttr>();
auto intRhs = operands[1].dyn_cast_or_null<IntegerAttr>();
if (!intLhs || !intRhs) {
return nullptr;
}
return IntegerAttr::get(
intLhs.getType(),
f(intLhs.getValue().getSExtValue(), intRhs.getValue().getSExtValue()));
}
using BinaryFloatOperatorFn = std::function<double(double, double)>;
static OpFoldResult
atenBinaryFloatOperatorFoldHelper(ArrayRef<Attribute> operands,
BinaryFloatOperatorFn f) {
double lhs, rhs;
auto parseDoubleAttribute = [](Attribute attr, double &value) -> bool {
if (auto intLhs = dyn_cast_or_null<IntegerAttr>(attr)) {
value = static_cast<double>(intLhs.getValue().getSExtValue());
} else if (auto floatLhs = dyn_cast_or_null<FloatAttr>(attr)) {
value = floatLhs.getValue().convertToDouble();
} else {
return false;
}
return true;
};
if (!parseDoubleAttribute(operands[0], lhs) ||
!parseDoubleAttribute(operands[1], rhs)) {
return nullptr;
}
return getF64FloatAttr(operands[0].getContext(), f(lhs, rhs));
}
//===----------------------------------------------------------------------===//
// AtenAliasOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAliasOp::fold(FoldAdaptor adaptor) { return getOperand(); }
//===----------------------------------------------------------------------===//
// AtenFloordivIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloordivIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(),
[](int64_t a, int64_t b) { return std::floor(a / (double)b); });
}
//===----------------------------------------------------------------------===//
// AtenRemainderIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenRemainderIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a % b; });
}
//===----------------------------------------------------------------------===//
// AtenAddIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AtenSubIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubIntOp::fold(FoldAdaptor adaptor) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(), [](int64_t a, int64_t b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// AtenCatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCatOp::fold(FoldAdaptor adaptor) {
// We set a maximum folding size of 16. This is a reasonable upper limit
// for shape computations.
constexpr int64_t kMaxFoldSize = 16;
auto list = getOperand(0).getDefiningOp<PrimListConstructOp>();
if (!list)
return nullptr;
auto elements = list.getElements();
if (elements.size() == 1 && elements[0].getType() == getResult().getType())
return list.getElements()[0];
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasSizes() || !resultTy.hasDtype())
return nullptr;
auto bResultTy = resultTy.toBuiltinTensor();
if (!bResultTy.hasStaticShape() || bResultTy.getNumElements() > kMaxFoldSize)
return nullptr;
auto dimAttr = dyn_cast_or_null<IntegerAttr>(adaptor.getDim());
if (!dimAttr)
return nullptr;
auto dim = dimAttr.getValue().getSExtValue();
dim += dim < 0 ? bResultTy.getRank() : 0;
for (int i = 0, s = bResultTy.getRank(); i < s; ++i) {
if (i == dim)
continue;
if (bResultTy.getDimSize(i) != 1)
return nullptr;
}
llvm::SmallVector<Attribute> values;
for (auto operand : list.getOperands()) {
DenseElementsAttr dattr;
if (!matchPattern(operand, m_Constant(&dattr)))
return nullptr;
auto oty = dyn_cast<RankedTensorType>(dattr.getType());
if (!oty)
return nullptr;
if (dattr.isSplat()) {
for (int i = 0, s = oty.getDimSize(dim); i < s; ++i)
values.push_back(dattr.getSplatValue<Attribute>());
} else {
auto evals = dattr.getValues<Attribute>();
for (int i = 0, s = oty.getDimSize(dim); i < s; ++i)
values.push_back(evals[i]);
}
}
return DenseElementsAttr::get(bResultTy.clone(resultTy.getDtype()), values);
}
void AtenCatOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenCatOp op, PatternRewriter &rewriter) {
auto list = op.getTensors().getDefiningOp<PrimListConstructOp>();
auto resultTy = dyn_cast<BaseTensorType>(op.getType());
if (!list || !resultTy)
return failure();
int64_t dim;
if (!matchPattern(op.getDim(), m_TorchConstantInt(&dim)))
return failure();
llvm::SmallVector<Value> filtered;
for (auto operand : list.getOperands()) {
auto operandTy = dyn_cast<BaseTensorType>(operand.getType());
if (!operandTy || !operandTy.hasSizes())
return failure();
int64_t adim = dim < 0 ? dim + operandTy.getSizes().size() : dim;
if (operandTy.getSizes()[adim] != 0)
filtered.push_back(operand);
}
if (filtered.size() == list.getNumOperands())
return failure();
auto newlist = rewriter.create<PrimListConstructOp>(
op.getLoc(), list.getType(), filtered);
rewriter.replaceOpWithNewOp<AtenCatOp>(op, op.getType(), newlist,
op.getDim());
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenBroadcastToOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenBroadcastToOp::fold(FoldAdaptor adaptor) {
auto inType = dyn_cast<BaseTensorType>(getOperand(0).getType());
auto outType = dyn_cast<BaseTensorType>(getResult().getType());
if (!inType || !outType || !inType.hasSizes() || !outType.hasSizes() ||
!outType.hasDtype())
return nullptr;
if (!inType.areAllSizesKnown() || !outType.areAllSizesKnown())
return nullptr;
auto inSizes = inType.getSizes();
auto outSizes = outType.getSizes();
if (inSizes.size() == outSizes.size()) {
bool sameSizes = true;
for (int i = 0, s = inSizes.size(); i < s; ++i)
sameSizes &= inSizes[i] == outSizes[i];
if (sameSizes)
return getOperand(0);
}
auto selfAttr = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
if (!selfAttr)
return nullptr;
if (!selfAttr.isSplat())
return nullptr;
auto attrty = RankedTensorType::get(outType.getSizes(), outType.getDtype());
return DenseElementsAttr::get(attrty, selfAttr.getSplatValue<Attribute>());
}
//===----------------------------------------------------------------------===//
// AtenSliceTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSliceTensorOp::fold(FoldAdaptor adaptor) {
DenseElementsAttr input =
dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
IntegerAttr start = dyn_cast_or_null<IntegerAttr>(adaptor.getStart());
IntegerAttr end = dyn_cast_or_null<IntegerAttr>(adaptor.getEnd());
IntegerAttr step = dyn_cast_or_null<IntegerAttr>(adaptor.getStep());
IntegerAttr dim = dyn_cast_or_null<IntegerAttr>(adaptor.getDim());
auto inType = dyn_cast<ValueTensorType>(getOperand(0).getType());
auto outType = dyn_cast<ValueTensorType>(getResult().getType());
if (start && end && step && step.getValue().getSExtValue() == 1 &&
start.getValue().getSExtValue() == 0 &&
end.getValue().getSExtValue() == std::numeric_limits<int64_t>::max() &&
inType == outType)
return getOperand(0);
if (!inType || !outType || !inType.hasSizes() || !outType.hasSizes() ||
!inType.hasDtype() || !outType.hasDtype() ||
inType.getDtype() != outType.getDtype())
return nullptr;
if (inType.getSizes().size() != outType.getSizes().size() ||
!inType.areAllSizesKnown() || !outType.areAllSizesKnown())
return nullptr;
if (input && input.isSplat())
return DenseElementsAttr::get(
outType.toBuiltinTensor().clone(inType.getDtype()),
input.getSplatValue<Attribute>());
int count = 1;
for (auto dim : outType.getSizes())
count = count * dim;
if (count == 0)
return {};
if (!dim)
return nullptr;
int64_t dimInt = dim.getValue().getSExtValue();
if (dimInt < 0)
dimInt += inType.getSizes().size();
bool unaryNonDim = true;
for (int i = 0, s = outType.getSizes().size(); i < s; ++i)
unaryNonDim &= outType.getSizes()[i] == 1 || i == dimInt;
// Fold the slice if the output tensor is relatively small, currently
// coded to 16:
if (input && start && step && dim && count < 16 && unaryNonDim &&
count < 16) {
int64_t inCount = input.getNumElements();
int64_t begin = start.getValue().getSExtValue();
int64_t stride = step.getValue().getSExtValue();
if (stride < 1)
return {};
int64_t limit = end.getValue().getSExtValue();
begin = begin < 0 ? begin + inCount : begin;
limit = limit < 0 ? limit + inCount : limit;
limit = limit < 0 ? inType.getSizes()[dimInt] : limit;
limit = std::min(limit, inType.getSizes()[dimInt]);
llvm::SmallVector<Attribute> values;
for (int i = begin; i < limit; i += stride)
values.push_back(input.getValues<Attribute>()[i]);
return DenseElementsAttr::get(
outType.toBuiltinTensor().clone(inType.getDtype()), values);
}
// If the input and output shapes are the same we can just fold:
for (size_t i = 0; i < inType.getSizes().size(); ++i) {
if (inType.getSizes()[i] != outType.getSizes()[i])
return nullptr;
}
return getOperand(0);
}
//===----------------------------------------------------------------------===//
// AtenMulIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenMulIntOp::fold(FoldAdaptor adaptor) {
int64_t lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
if ((lConstant && lhs == 0) || (rConstant && rhs == 0))
return getI64IntegerAttr(getContext(), 0);
if (lConstant && rConstant)
return getI64IntegerAttr(getContext(), lhs * rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenMulFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenMulFloatOp::fold(FoldAdaptor adaptor) {
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// AtenSubFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubFloatOp::fold(FoldAdaptor adaptor) {
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// AtenAddOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
if (adaptor.getA().isa<IntegerAttr>() && adaptor.getB().isa<IntegerAttr>()) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(),
[](int64_t a, int64_t b) -> int64_t { return a + b; });
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(),
[](double a, double b) -> double { return a + b; });
}
//===----------------------------------------------------------------------===//
// AtenMulOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenMulOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
if (adaptor.getA().isa<IntegerAttr>() && adaptor.getB().isa<IntegerAttr>()) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(),
[](int64_t a, int64_t b) -> int64_t { return a * b; });
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(),
[](double a, double b) -> double { return a * b; });
}
//===----------------------------------------------------------------------===//
// AtenSubOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSubOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
if (adaptor.getA().isa<IntegerAttr>() && adaptor.getB().isa<IntegerAttr>()) {
return atenBinaryIntOperatorFoldHelper(
adaptor.getOperands(),
[](int64_t a, int64_t b) -> int64_t { return a - b; });
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(),
[](double a, double b) -> double { return a - b; });
}
//===----------------------------------------------------------------------===//
// AtenDivOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDivOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
// Since AtenDivOp always returns float value, we don't need to deal with the
// case where the operands are both integers separately.
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(),
[](double a, double b) -> double { return a / b; });
}
//===----------------------------------------------------------------------===//
// AtenAddFloatIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenAddFloatIntOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AtenPowIntFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenPowIntFloatOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA() || !adaptor.getB()) {
return nullptr;
}
return atenBinaryFloatOperatorFoldHelper(
adaptor.getOperands(), [](double a, double b) { return std::pow(a, b); });
}
//===----------------------------------------------------------------------===//
// AtenCeilScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCeilScalarOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA()) {
return nullptr;
}
auto floatValue = adaptor.getA().dyn_cast_or_null<FloatAttr>();
if (!floatValue) {
return nullptr;
}
return getI64IntegerAttr(
getContext(),
static_cast<int64_t>(std::ceil(floatValue.getValue().convertToDouble())));
}
//===----------------------------------------------------------------------===//
// AtenNegIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNegIntOp::fold(FoldAdaptor adaptor) {
int64_t c;
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
return getI64IntegerAttr(getContext(), -c);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenNegFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenNegFloatOp::fold(FoldAdaptor adaptor) {
if (!adaptor.getA()) {
return nullptr;
}
auto value = adaptor.getA().dyn_cast_or_null<FloatAttr>();
if (!value) {
return nullptr;
}
return getF64FloatAttr(getContext(), -value.getValue().convertToDouble());
}
//===----------------------------------------------------------------------===//
// AtenSqrtIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenSqrtIntOp::fold(FoldAdaptor adaptor) {
int64_t c;
if (matchPattern(getOperand(), m_TorchConstantInt(&c)))
return getF64FloatAttr(getContext(), std::sqrt(c));
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimDtypeOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimDtypeOp::fold(FoldAdaptor adaptor) {
BaseTensorType tensorType = cast<BaseTensorType>(getA().getType());
if (tensorType.hasDtype()) {
torch_upstream::ScalarType scalarType =
Torch::getScalarTypeForType(tensorType.getDtype());
return getI64IntegerAttr(getContext(), static_cast<int64_t>(scalarType));
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// PrimDeviceOp
//===----------------------------------------------------------------------===//
void PrimDeviceOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](PrimDeviceOp op, PatternRewriter &rewriter) {
// Device information isn't relevant to torch-mlir, just replace it with
// "cpu".
rewriter.replaceOpWithNewOp<Torch::ConstantDeviceOp>(op, "cpu");
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenCudaOp
//===----------------------------------------------------------------------===//
void AtenCudaOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenCudaOp op, PatternRewriter &rewriter) {
// Device information isn't relevant to torch-mlir
auto inputTensor = op.getSelf();
rewriter.replaceOp(op, inputTensor);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenDeviceWithIndexOp
//===----------------------------------------------------------------------===//
void AtenDeviceWithIndexOp::getCanonicalizationPatterns(
RewritePatternSet &patterns, MLIRContext *context) {
patterns.add(+[](AtenDeviceWithIndexOp op, PatternRewriter &rewriter) {
std::string type;
int64_t index;
if (!matchPattern(op.getType(), m_TorchConstantStr(type))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: type must be a constant string");
}
if (!matchPattern(op.getIndex(), m_TorchConstantInt(&index))) {
return rewriter.notifyMatchFailure(
op, "unimplemented: index must be a constant integer");
}
rewriter.replaceOpWithNewOp<Torch::ConstantDeviceOp>(
op, type + ":" + std::to_string(index));
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenTensorOp::fold(FoldAdaptor adaptor) {
// If a torch.aten.tensor op is initialized by a list with a constant, single
// element, fold it into a torch.vtensor.literal
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasSizes() || !resultTy.hasDtype())
return nullptr;
Type eTy = resultTy.getDtype();
ShapedType shapedTy = resultTy.toBuiltinTensor().clone(eTy);
SmallVector<int64_t> data;
if (matchPattern(getData(), m_TorchListOfConstantInts(data)) &&
data.size() == 1) {
Attribute attribute = IntegerAttr::get(eTy, data[0]);
return DenseElementsAttr::get(shapedTy, attribute);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenTensorIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenTensorIntOp::fold(FoldAdaptor adaptor) {
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasSizes() || !resultTy.hasDtype())
return nullptr;
Type eTy = resultTy.getDtype();
ShapedType shapedTy = resultTy.toBuiltinTensor().clone(eTy);
int64_t data;
if (matchPattern(getT(), m_TorchConstantInt(&data))) {
Attribute attribute = IntegerAttr::get(eTy, data);
return DenseElementsAttr::get(shapedTy, attribute);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenTensorFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenTensorFloatOp::fold(FoldAdaptor adaptor) {
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasSizes() || !resultTy.hasDtype())
return nullptr;
Type eTy = resultTy.getDtype();
ShapedType shapedTy = resultTy.toBuiltinTensor().clone(eTy);
double data;
if (matchPattern(getT(), m_TorchConstantFloat(&data))) {
Attribute attribute = FloatAttr::get(eTy, data);
return DenseElementsAttr::get(shapedTy, attribute);
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// Aten_ShapeAsTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult Aten_ShapeAsTensorOp::fold(FoldAdaptor adaptor) {
auto selfTy = dyn_cast<BaseTensorType>(getSelf().getType());
auto resultTy = dyn_cast<BaseTensorType>(getType());
if (!selfTy || !resultTy || !selfTy.hasSizes() || !resultTy.hasDtype() ||
!resultTy.hasSizes())
return {};
llvm::SmallVector<int64_t> values(selfTy.getSizes());
if (llvm::any_of(values, [](int64_t d) { return d == Torch::kUnknownSize; }))
return {};
auto dty = dyn_cast<IntegerType>(resultTy.getDtype());
if (!dty)
return {};
llvm::SmallVector<Attribute> attrs;
for (auto val : values) {
attrs.push_back(IntegerAttr::get(dty, val));
}
auto attrty = RankedTensorType::get(resultTy.getSizes(), dty);
return DenseElementsAttr::get(attrty, attrs);
}
//===----------------------------------------------------------------------===//
// AtenIntTensorOp
//===----------------------------------------------------------------------===//
void AtenIntTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenIntTensorOp op, PatternRewriter &rewriter) {
Value scalarInt = getScalarIntValue(op.getA(), op.getLoc(), rewriter);
if (!scalarInt)
return failure();
rewriter.replaceOp(op, scalarInt);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenFloatTensorOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenFloatTensorOp::fold(FoldAdaptor adaptor) {
// If a scalar number is converted to a 0-d tensor and passed on to
// aten.Float.Tensor, fold to the scalar number.
if (auto numToTensorScalar = getA().getDefiningOp<PrimNumToTensorScalarOp>())
return numToTensorScalar.getA();
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenDivFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDivFloatOp::fold(FoldAdaptor adaptor) {
double lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantFloat(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantFloat(&rhs));
if (lConstant && lhs == 0.0)
return getF64FloatAttr(getContext(), 0.0);
if (lConstant && rConstant && rhs == 1.0)
return getF64FloatAttr(getContext(), lhs);
if (lConstant && rConstant)
return getF64FloatAttr(getContext(), lhs / rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenDivIntOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenDivIntOp::fold(FoldAdaptor adaptor) {
int64_t lhs, rhs;
bool lConstant = matchPattern(getOperand(0), m_TorchConstantInt(&lhs));
bool rConstant = matchPattern(getOperand(1), m_TorchConstantInt(&rhs));
if (lConstant && rConstant)
return getF64FloatAttr(getContext(), double(lhs) / rhs);
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenIndexSelectOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenIndexSelectOp::fold(FoldAdaptor adaptor) {
auto self = getSelf();
auto index = getIndex();
auto selfTy = dyn_cast<ValueTensorType>(self.getType());
auto indexTy = dyn_cast<ValueTensorType>(index.getType());
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!selfTy || !indexTy || !resultTy || !selfTy.hasSizes() ||
!indexTy.hasSizes() || !resultTy.hasSizes() || !selfTy.hasDtype() ||
!indexTy.hasDtype() || !resultTy.hasDtype())
return nullptr;
auto selfSizes = selfTy.getSizes();
auto indexSizes = indexTy.getSizes();
auto resultSizes = resultTy.getSizes();
if (selfTy.getDtype() != resultTy.getDtype() ||
selfSizes.size() != resultSizes.size() || indexSizes.size() != 1)
return nullptr;
// If the selection results in a tensor of the same dimensions as the
// input, the selection must have specified every index of the input,
// so the result is exactly the same as the input.
bool fullTensor = true;
for (int i = 0, s = selfSizes.size(); i < s; ++i) {
fullTensor &= selfSizes[i] == resultSizes[i];
fullTensor &= selfSizes[i] != Torch::kUnknownSize;
fullTensor &= resultSizes[i] != Torch::kUnknownSize;
}
if (fullTensor && indexSizes[0] == 1)
return self;
// If the input tensor, index dimension, or indexes are non-constant,
// can't fold.
auto selfAttr = dyn_cast_or_null<DenseElementsAttr>(adaptor.getSelf());
auto dimAttr = dyn_cast_or_null<IntegerAttr>(adaptor.getDim());
auto indexAttr = dyn_cast_or_null<DenseElementsAttr>(adaptor.getIndex());
if (!selfAttr || !dimAttr || !indexAttr)
return {};
// If the input's dimensions are all 1 except for one dimension, and if
// there is a single index in the index list (as detected by the result
// dimension being 1), then fold to a <1x1x...x1> tensor literal containing
// a single element. Handles float and int types.
int64_t dimInt = dimAttr.getInt();
// If the selected dim is negative, count backwards from the last dim
if (dimInt < 0)
dimInt = selfSizes.size() + dimInt;
assert(uint64_t(dimInt) < selfSizes.size() &&
"Selected dim > number of dims");
for (int i = 0, s = selfSizes.size(); i < s; ++i) {
if ((selfSizes[i] != 1 && i != dimInt) || resultSizes[i] != 1)
return nullptr;
}
// Get the single index value for the selected dimension
auto splatValue = indexAttr.getSplatValue<IntegerAttr>();
int64_t indexInt = getIntAttrAsSigned(splatValue);
indexInt = indexInt < 0 && selfSizes[dimInt] ? indexInt + selfSizes[dimInt]
: indexInt;
// Extract the single constant value from the input tensor and turn the
// extracted value into a single-element tensor of the output shape and dtype
Attribute splattr = selfAttr.isSplat()
? selfAttr.getSplatValue<Attribute>()
: selfAttr.getValues<Attribute>()[indexInt];
auto dty = resultTy.getDtype();
auto attrTy = resultTy.toBuiltinTensor().clone(dty);
if (auto floatAttr = dyn_cast<FloatAttr>(splattr))
return DenseElementsAttr::get(
attrTy, FloatAttr::get(dty, floatAttr.getValueAsDouble()));
if (auto intAttr = dyn_cast<IntegerAttr>(splattr)) {
return DenseElementsAttr::get(attrTy,
IntegerAttr::get(dty, intAttr.getValue()));
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenItemOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenItemOp::fold(FoldAdaptor adaptor) {
// see if we have a constant tensor
DenseElementsAttr attr;
if (matchPattern(getOperand(), m_Constant(&attr))) {
auto splat = attr.getSplatValue<Attribute>();
if (auto intAttr = dyn_cast<IntegerAttr>(splat)) {
return intAttr.getType().isUnsignedInteger()
? getI64IntegerAttr(getContext(), intAttr.getUInt())
: getI64IntegerAttr(getContext(), intAttr.getSInt());
}
if (auto floatAttr = dyn_cast<FloatAttr>(splat)) {
return getF64FloatAttr(getContext(), floatAttr.getValueAsDouble());
}
return nullptr;
}
if (auto full = getOperand().getDefiningOp<Torch::AtenFullOp>()) {
return full.getFillValue();
}
if (auto numToTensor =
getOperand().getDefiningOp<Torch::PrimNumToTensorScalarOp>()) {
return numToTensor.getA();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenOnesOp, AtenZerosOp, AtenFullOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenOnesOp::fold(FoldAdaptor adaptor) {
SmallVector<int64_t> sizes;
if (!matchPattern(getSize(), m_TorchListOfConstantInts(sizes))) {
return nullptr;
}
Type resultType = getResult().getType();
BaseTensorType resultTensorType = dyn_cast<BaseTensorType>(resultType);
if (!resultTensorType || !resultTensorType.hasDtype() ||
!resultTensorType.hasSizes()) {
return nullptr;
}
for (auto sz : sizes)
if (sz == Torch::kUnknownSize || sz < 0)
return nullptr;
for (auto sz : resultTensorType.getSizes())
if (sz == Torch::kUnknownSize || sz < 0)
return nullptr;
ShapedType shapedty =
mlir::RankedTensorType::get( // convert Torch type to builtin ShapedType
sizes, resultTensorType.getDtype());
if (!shapedty) {
return nullptr;
}
auto elementType = shapedty.getElementType();
if (isa<IntegerType>(elementType)) {
Attribute attribute = IntegerAttr::get(elementType, 1);
return DenseElementsAttr::get(shapedty, attribute);
}
if (isa<FloatType>(elementType)) {
Attribute attribute = FloatAttr::get(elementType, 1.0);
return DenseElementsAttr::get(shapedty, attribute);
}
return nullptr;
}
OpFoldResult AtenZerosOp::fold(FoldAdaptor adaptor) {
SmallVector<int64_t> sizes;
if (!matchPattern(getSize(), m_TorchListOfConstantInts(sizes))) {
return nullptr;
}
Type resultType = getResult().getType();
BaseTensorType resultTensorType = dyn_cast<BaseTensorType>(resultType);
if (!resultTensorType || !resultTensorType.hasDtype() ||
!resultTensorType.hasSizes()) {
return nullptr;
}
for (auto sz : sizes)
if (sz == Torch::kUnknownSize || sz < 0)
return nullptr;
for (auto sz : resultTensorType.getSizes())
if (sz == Torch::kUnknownSize || sz < 0)
return nullptr;
ShapedType shapedty =
mlir::RankedTensorType::get( // convert Torch type to builtin ShapedType
sizes, resultTensorType.getDtype());
if (!shapedty) {
return nullptr;
}
auto elementType = shapedty.getElementType();
if (isa<IntegerType>(elementType)) {
Attribute attribute = IntegerAttr::get(elementType, 0);
return DenseElementsAttr::get(shapedty, attribute);
}
if (isa<FloatType>(elementType)) {
Attribute attribute = FloatAttr::get(elementType, 0.0);
return DenseElementsAttr::get(shapedty, attribute);
}
return nullptr;
}
OpFoldResult AtenFullOp::fold(FoldAdaptor adaptor) {
SmallVector<int64_t> sizes;
if (!matchPattern(getSize(), m_TorchListOfConstantInts(sizes))) {
return nullptr;
}
Type resultType = getResult().getType();
BaseTensorType resultTensorType = dyn_cast<BaseTensorType>(resultType);
if (!resultTensorType || !resultTensorType.hasDtype() ||
!resultTensorType.hasSizes()) {
return nullptr;
}
for (auto sz : sizes)
if (sz == Torch::kUnknownSize || sz < 0)
return nullptr;
for (auto sz : resultTensorType.getSizes())
if (sz == Torch::kUnknownSize || sz < 0)
return nullptr;
ShapedType shapedty = mlir::RankedTensorType::get(
resultTensorType.getSizes(), resultTensorType.getDtype());
auto elementType = shapedty.getElementType();
if (isa<IntegerType>(elementType)) {
int64_t value = 0;
if (matchPattern(getFillValue(), m_TorchConstantInt(&value))) {
Attribute attribute = IntegerAttr::get(elementType, value);
return DenseElementsAttr::get(shapedty, attribute);
}
}
if (isa<FloatType>(elementType)) {
double value = 0.0;
if (matchPattern(getFillValue(), m_TorchConstantFloat(&value))) {
Attribute attribute = FloatAttr::get(elementType, value);
return DenseElementsAttr::get(shapedty, attribute);
}
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenCeilFloatOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenCeilFloatOp::fold(FoldAdaptor adaptor) {
double c;
if (matchPattern(getOperand(), m_TorchConstantFloat(&c)))
return getI64IntegerAttr(getContext(), std::ceil(c));
return nullptr;
}
//===----------------------------------------------------------------------===//
// AtenWhereSelfOp
//===----------------------------------------------------------------------===//
static Attribute getBroadcastedAttr(Attribute attr, ValueTensorType ty) {
if (!attr || !ty.hasDtype() || !ty.hasSizes())
return nullptr;
auto dty = ty.getDtype();
if (auto valueDense = dyn_cast<DenseElementsAttr>(attr)) {
if (!valueDense.isSplat())
return nullptr;
auto splattr = valueDense.getSplatValue<Attribute>();
auto attrty = ty.toBuiltinTensor().clone(dty);
return DenseElementsAttr::get(attrty, splattr);
}
if (auto intAttr = dyn_cast_or_null<IntegerAttr>(attr)) {
if (!isa<mlir::IntegerType>(dty))
return nullptr;
int64_t intval = intAttr.getInt();
auto attrty = ty.toBuiltinTensor().clone(dty);
return DenseElementsAttr::get(attrty, IntegerAttr::get(dty, intval));
}
if (auto fpAttr = dyn_cast_or_null<FloatAttr>(attr)) {
if (!isa<mlir::FloatType>(dty))
return nullptr;
double dblval = fpAttr.getValueAsDouble();
auto attrty = ty.toBuiltinTensor().clone(dty);
return DenseElementsAttr::get(attrty, FloatAttr::get(dty, dblval));
}
return nullptr;
}
OpFoldResult AtenWhereSelfOp::fold(FoldAdaptor adaptor) {
if (getSelf() == getOther())
return getSelf();
auto dense = dyn_cast_or_null<DenseElementsAttr>(adaptor.getCondition());
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasDtype() || !resultTy.hasSizes() || !dense ||
!dense.isSplat())
return nullptr;
auto condattr = dense.getSplatValue<APInt>();
auto value = getSelf();
auto valueAttr = adaptor.getSelf();
if (condattr.isZero()) {
value = getOther();
valueAttr = adaptor.getOther();
}
auto valueTy = dyn_cast<ValueTensorType>(value.getType());
if (valueTy && valueTy.hasSizes() && valueTy.hasDtype() &&
valueTy == resultTy)
return value;
return getBroadcastedAttr(valueAttr, resultTy);
}
//===----------------------------------------------------------------------===//
// AtenWhereScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenWhereScalarOp::fold(FoldAdaptor adaptor) {
auto dense = dyn_cast_or_null<DenseElementsAttr>(adaptor.getCondition());
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasDtype() || !resultTy.hasSizes() || !dense ||
!dense.isSplat())
return nullptr;
auto condattr = dense.getSplatValue<APInt>();
auto valueAttr = adaptor.getSelf();
if (condattr.isZero()) {
valueAttr = adaptor.getOther();
}
return getBroadcastedAttr(valueAttr, resultTy);
}
void AtenWhereScalarOp::getCanonicalizationPatterns(RewritePatternSet &patterns,
MLIRContext *context) {
patterns.add(+[](AtenWhereScalarOp op, PatternRewriter &rewriter) {
auto cond = op.getCondition();
auto self = op.getSelf();
auto other = op.getOther();
if (self != other)
return rewriter.notifyMatchFailure(op, "differing output");
auto condTy = dyn_cast<BaseTensorType>(cond.getType());
if (!condTy || !condTy.hasSizes())
return rewriter.notifyMatchFailure(op, "output size unknown");
SmallVector<Value> dims;
auto torchIntTy = rewriter.getType<Torch::IntType>();
for (int i = 0, s = condTy.getSizes().size(); i < s; ++i) {
Value iv = rewriter.create<Torch::ConstantIntOp>(
op.getLoc(), torchIntTy, rewriter.getI64IntegerAttr(i));
dims.push_back(rewriter.create<Torch::AtenSizeIntOp>(
op.getLoc(), torchIntTy, cond, iv));
}
Value dimsList = rewriter.create<Torch::PrimListConstructOp>(
op.getLoc(), Torch::ListType::get(torchIntTy), dims);
Value none = rewriter.create<Torch::ConstantNoneOp>(op.getLoc());
rewriter.replaceOpWithNewOp<Torch::AtenFullOp>(
op, op.getType(), dimsList, self, none, none, none, none);
return success();
});
}
//===----------------------------------------------------------------------===//
// AtenWhereScalarOtherOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenWhereScalarOtherOp::fold(FoldAdaptor adaptor) {
auto dense = dyn_cast_or_null<DenseElementsAttr>(adaptor.getCondition());
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasDtype() || !resultTy.hasSizes() || !dense ||
!dense.isSplat())
return nullptr;
auto condattr = dense.getSplatValue<APInt>();
auto valueAttr = adaptor.getSelf();
if (condattr.isZero()) {
valueAttr = adaptor.getOther();
}
return getBroadcastedAttr(valueAttr, resultTy);
}
//===----------------------------------------------------------------------===//
// AtenWhereScalarSelfOp
//===----------------------------------------------------------------------===//
OpFoldResult AtenWhereScalarSelfOp::fold(FoldAdaptor adaptor) {
auto dense = dyn_cast_or_null<DenseElementsAttr>(adaptor.getCondition());
auto resultTy = dyn_cast<ValueTensorType>(getType());
if (!resultTy || !resultTy.hasDtype() || !resultTy.hasSizes() || !dense ||
!dense.isSplat())
return nullptr;
auto condattr = dense.getSplatValue<APInt>();
auto valueAttr = adaptor.getSelf();
if (condattr.isZero()) {
valueAttr = adaptor.getOther();
}
return getBroadcastedAttr(valueAttr, resultTy);
}
//===----------------------------------------------------------------------===//
// PrimMaxIntOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimMaxIntOp::fold(FoldAdaptor adaptor) {
// If both operands are the same, then the operation is an identity.
if (getA() == getB())
return getA();
auto lhs = adaptor.getA().dyn_cast_or_null<IntegerAttr>();
auto rhs = adaptor.getB().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return nullptr;
// Torch semantics are that !torch.int is 64-bit signed.
return IntegerAttr::get(
lhs.getType(),
std::max(lhs.getValue().getSExtValue(), rhs.getValue().getSExtValue()));
}
//===----------------------------------------------------------------------===//
// PrimNumToTensorScalarOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimNumToTensorScalarOp::fold(FoldAdaptor adaptor) {
Attribute a = adaptor.getA();
auto resultTy = cast<BaseTensorType>(getType());
if (!a)
return {};
if (!resultTy.hasDtype() || !resultTy.hasSizes())
return {};
auto dty = resultTy.getDtype();
if (auto iattr = dyn_cast<IntegerAttr>(a)) {
a = IntegerAttr::get(dty, iattr.getInt());
} else if (auto fattr = dyn_cast<FloatAttr>(a)) {
a = FloatAttr::get(dty, fattr.getValueAsDouble());
} else {
// doesn't handle other types, like complex type
return {};
}
auto mlirTensorType =
RankedTensorType::get(resultTy.getSizes(), resultTy.getDtype());
return SplatElementsAttr::get(mlirTensorType, a);
}
//===----------------------------------------------------------------------===//
// PrimMinSelfIntOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimMinSelfIntOp::fold(FoldAdaptor adaptor) {
auto list = getOperand().getDefiningOp<PrimListConstructOp>();
if (!list)
return nullptr;
// TODO: What does it return for an empty list?
if (list->getNumOperands() == 0)
return nullptr;
SmallVector<int64_t> values;
for (auto operand : list->getOperands()) {
int64_t value;
if (!matchPattern(operand, m_TorchConstantInt(&value)))
return nullptr;
values.push_back(value);
}
return getI64IntegerAttr(getContext(),
*std::min_element(values.begin(), values.end()));
}
//===----------------------------------------------------------------------===//
// PrimMinIntOp
//===----------------------------------------------------------------------===//
OpFoldResult PrimMinIntOp::fold(FoldAdaptor adaptor) {
// If both operands are the same, then the operation is an identity.
if (getA() == getB())
return getA();
auto lhs = adaptor.getA().dyn_cast_or_null<IntegerAttr>();
auto rhs = adaptor.getB().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return nullptr;
// Torch semantics are that !torch.int is 64-bit signed.
return IntegerAttr::get(
lhs.getType(),
std::min(lhs.getValue().getSExtValue(), rhs.getValue().getSExtValue()));
}
//===----------------------------------------------------------------------===//
// ShapeCalculateOp
//===----------------------------------------------------------------------===//
template <typename CalculateOp>
static void
getSuccessorRegionsForCalculateOp(CalculateOp op, RegionBranchPoint point,
SmallVectorImpl<RegionSuccessor> &regions) {
if (!point.getRegionOrNull()) {
// First thing the op does is branch into the calculation.
regions.emplace_back(&op.getCalculation());
return;
}
if (point == op.getBody()) {
// Body returns control to the outer op, passing through results.
regions.emplace_back(op.getResults());
return;
}
assert(point == op.getCalculation());
// Calculation branches to the body.
regions.emplace_back(&op.getBody());
}
void ShapeCalculateOp::getSuccessorRegions(
RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> &regions) {
getSuccessorRegionsForCalculateOp(*this, point, regions);
}
//===----------------------------------------------------------------------===//
// DtypeCalculateOp
//===----------------------------------------------------------------------===//
void DtypeCalculateOp::getSuccessorRegions(
RegionBranchPoint point, SmallVectorImpl<RegionSuccessor> &regions) {
getSuccessorRegionsForCalculateOp(*this, point, regions);
}
//===----------------------------------------------------------------------===//
// ShapeCalculateYieldShapesOp
//===----------------------------------------------------------------------===//
MutableOperandRange ShapeCalculateYieldShapesOp::getMutableSuccessorOperands(
RegionBranchPoint point) {
// The shape operands don't get forwarded to the body.
// MutableOperandRange always has an owning operation, even if empty, so
// create a 0-length range.
return MutableOperandRange(*this, /*start=*/0, /*length=*/0);
}
LogicalResult ShapeCalculateYieldShapesOp::verify() {
auto parent = cast<ShapeCalculateOp>(getOperation()->getParentOp());
if (parent.getNumResults() != getNumOperands())
return emitOpError("expected number of shapes to match number of results");
return success();
}
//===----------------------------------------------------------------------===//
// AtenNormScalarOp
//===----------------------------------------------------------------------===//
LogicalResult AtenNormScalarOp::verify() {
// Verificaion of input type for torch.aten.norm.Scalar.
// Per PyTorch docs, only float and complex types are valid for norm
// operation.
auto inTensor = cast<BaseTensorType>(getSelf().getType());
// If no dtype is specified, it will default to a float one.
if (!inTensor.hasDtype()) {
return success();
}
auto inTensorDtype = inTensor.getDtype();
// Check if dtype is one of those supported by norm operation.
// ComplexType will match any torch complex types, but each float must be
// checked individually.
if (!inTensorDtype.isa<mlir::ComplexType, mlir::Float16Type,
mlir::Float32Type, mlir::Float64Type>()) {
return emitOpError(
"expected a float or complex type for input tensor, but got ")
<< inTensorDtype;
}
return success();
}
//===----------------------------------------------------------------------===//
// AtenPermuteOp
//===----------------------------------------------------------------------===//
LogicalResult AtenPermuteOp::verify() {
// Verification of the permute op for input & output dimensions with
// statically known sizes.
SmallVector<Value> permutation;
auto permutationObtained = getListConstructElements(getDims(), permutation);
if (!permutationObtained) {
return success();
}
auto outType = cast<BaseTensorType>(getResult().getType());
auto inType = cast<BaseTensorType>(getSelf().getType());
if (!outType.hasSizes() || !inType.hasSizes()) {
return success();
}
auto outShape = outType.getSizes();
auto inShape = inType.getSizes();
auto outRank = outShape.size();
if (outRank != inShape.size()) {
return emitOpError(
"expected input and output tensors to have same rank, but ")
<< inShape.size() << " != " << outRank << '.';
}
if (outRank != permutation.size()) {
return emitOpError() << "expected permutation to have size equal result "
"tensor rank. The permutation has "
<< permutation.size()
<< " elements, the output has rank " << outRank << '.';
}
// Initialization of the reverse permutation. -1 denotes an unknown
// permutation index.
SmallVector<int64_t> reversePermutation(outRank, -1);
// In this loop:
// (1) check that the permutation indices are in bounds, and not duplicated.
// (2) populate reversePermutation (to check for duplicates).
// (3) check that the input and output shapes agree with the permutation. For
// example, if the permutation is (1,2,0) and the input shape is (2,3,5),
// then the output shape must be (3,5,2).
for (uint64_t to = 0; to < outRank; ++to) {
int64_t from;
auto fromIsSet = matchPattern(permutation[to], m_TorchConstantInt(&from));
if (!fromIsSet) {
continue;
}
// if 'from' is the unkwown index, continue.
if (from == -1) {
continue;
}
if (!isValidDim(from, outRank)) {
return emitError("observed invalid index in permutation (")
<< from << ") for input tensor of rank " << outRank << '.';
}
if (reversePermutation[from] != -1) {
return emitOpError("has a duplicate dimension (")
<< from << ") in its permutation " << getDims() << '.';
}
reversePermutation[from] = to;
auto dimSizesDefined =
inShape[from] != kUnknownSize && outShape[to] != kUnknownSize;
auto dimSizesDifferent = inShape[from] != outShape[to];
if (dimSizesDefined && dimSizesDifferent) {
return emitOpError("has a permutation which is not compatible with the "
"input and output shapes. ")
<< "The input shape in dimension " << from << " is "
<< inShape[from] << ", and the output shape in dimension " << to
<< " is " << outShape[to]
<< " : they should be the same with this permutation. ";
}
}
return success();
}
//===----------------------------------------------------------------------===//
// AtenLinalgCrossOp
//===----------------------------------------------------------------------===//
LogicalResult AtenLinalgCrossOp::verify() {
auto selfType = cast<BaseTensorType>(getSelf().getType());
auto otherType = cast<BaseTensorType>(getOther().getType());
if (!selfType.hasDtype() || !otherType.hasDtype() || !selfType.hasSizes() ||
!otherType.hasSizes()) {
return success();
}
Type selfDtype = selfType.getDtype();
Type otherDtype = otherType.getDtype();
// the operation succeeds only if both inputs have the same dtype
if (selfDtype != otherDtype) {
return emitOpError("input tensors must have the same dtype, but got ")
<< selfDtype << " and " << otherDtype;
}
// Check if any of the input tensors has torch.bool dtype.
// The operation does not support this type.
// The docs state that only float, double, cfloat and cdouble dtypes are
// supported, but, when testing, it fails only for boolean dtype. Update to
// fit the docs if necessary.
// https://pytorch.org/docs/stable/generated/torch.linalg.cross.html
if (selfDtype.isSignlessInteger(1) || otherDtype.isSignlessInteger(1)) {
return emitOpError("input tensors must not have bool dtype");
}
ArrayRef<int64_t> selfShape = selfType.getSizes();
ArrayRef<int64_t> otherShape = otherType.getSizes();
int64_t selfRank = selfShape.size();
int64_t otherRank = otherShape.size();
// check if both input tensors have the same number of dims
if (selfRank != otherRank) {
return emitOpError("input tensors must have the same number of dimensions, "
"but got ")
<< selfRank << " and " << otherRank;
}
// convert dim to an integer type
int64_t dim;
if (!matchPattern(getDim(), m_TorchConstantInt(&dim))) {
return success();
}
// check if dim is in the correct range
if (dim >= selfRank || dim < -selfRank) {
return emitOpError("dim expected to be in rank of [")
<< -selfRank << ", " << selfRank - 1 << "], but got " << dim;
}
// compensate for possible negative dim value
if (dim < 0) {
dim += selfRank;
}
// check if the size of the dimensions specified by 'dim' is equal to 3
// (required by the operation)
if ((selfShape[dim] != 3 && selfShape[dim] != kUnknownSize) ||
(otherShape[dim] != 3 && otherShape[dim] != kUnknownSize)) {
return emitOpError("inputs dimension ")
<< dim << " must have length 3, but got " << selfShape[dim]
<< " and " << otherShape[dim];
}
// Check if there is a disparity between dimension sizes.
// Dimensions at the same index must either have the same size,
// or one of them must be equal to 1.
int32_t i = 0;
for (auto [selfCurrent, otherCurrent] :
llvm::zip_equal(selfShape, otherShape)) {
if (selfCurrent != otherCurrent && selfCurrent != 1 && otherCurrent != 1) {
return emitOpError("the size of first tensor (")
<< selfCurrent << ") must match the size of second tensor ("
<< otherCurrent << ") at dimension " << i
<< " or one of them must be 1";
}
++i;
}
return success();
}
//===----------------------------------------------------------------------===//
// DtypeCalculateYieldDtypesOp
//===----------------------------------------------------------------------===//
MutableOperandRange DtypeCalculateYieldDtypesOp::getMutableSuccessorOperands(
RegionBranchPoint point) {
// The dtype operands don't get forwarded to the body.
// MutableOperandRange always has an owning operation, even if empty, so
// create a 0-length range.
return MutableOperandRange(*this, /*start=*/0, /*length=*/0);
}
LogicalResult DtypeCalculateYieldDtypesOp::verify() {
auto parent = cast<DtypeCalculateOp>(getOperation()->getParentOp());
if (parent.getNumResults() != getNumOperands())
return emitOpError("expected number of dtypes to match number of results");
return success();
}
//===----------------------------------------------------------------------===//
// GlobalSlotModuleInitializerOp
//===----------------------------------------------------------------------===//
LogicalResult GlobalSlotModuleInitializerOp::verify() {
// We centralize all verification of the global slots and the
// InitializeGlobalSlotsOp into here, since it requires processing the whole
// module.
// TODO: We should really have a `torch.module` and have this initializer be
// a region attached to it.
ModuleOp module = cast<ModuleOp>(getOperation()->getParentOp());
for (auto op : module.getOps<GlobalSlotModuleInitializerOp>()) {
if (op.getOperation() != getOperation())
return op.emitError("there must be only one global slot initializer");
}
// Collect the relevant symbol names we will verify.
DenseSet</*StringAttr*/ Attribute> knownGlobalSlots;
for (auto op : module.getOps<GlobalSlotOp>())
knownGlobalSlots.insert(op.getSymNameAttr());
DenseSet</*StringAttr*/ Attribute> initializedGlobalSlots;
auto initialize = cast<InitializeGlobalSlotsOp>(getBody()->getTerminator());
for (Attribute symName : initialize.getSlotSymNames()) {
auto wasInserted = initializedGlobalSlots
.insert(cast<FlatSymbolRefAttr>(symName).getAttr())
.second;
if (!wasInserted)
return initialize.emitError("duplicate initialization of global slot: ")
<< symName;
}
auto lessThanByStringValue = [](Attribute lhs, Attribute rhs) {
return cast<StringAttr>(lhs).getValue() < cast<StringAttr>(rhs).getValue();
};
auto known = llvm::to_vector(knownGlobalSlots);
llvm::sort(known, lessThanByStringValue);
auto initialized = llvm::to_vector(initializedGlobalSlots);
llvm::sort(initialized, lessThanByStringValue);
// Check that the global slots in the module are all initialized.
SymbolTable symbolTable(module);
if (initializedGlobalSlots != knownGlobalSlots) {
InFlightDiagnostic diag = initialize.emitOpError(
"must have one initializer for each global slot in the module");
for (auto knownGlobalSlot : known) {
auto symName = FlatSymbolRefAttr::get(cast<StringAttr>(knownGlobalSlot));
if (!initializedGlobalSlots.count(knownGlobalSlot)) {
diag.attachNote(
symbolTable.lookup<GlobalSlotOp>(symName.getAttr()).getLoc())
.append("missing global slot initializer for ", symName);
}
}
for (auto initializedGlobalSlot : initialized) {
if (!knownGlobalSlots.count(initializedGlobalSlot)) {
diag.attachNote().append(
"unexpected global slot initializer for non-existent global slot ",
FlatSymbolRefAttr::get(cast<StringAttr>(initializedGlobalSlot)));
}
}
return diag;
}
// Check that initial values satisfy type bounds.
for (int i = 0, e = initialize.getNumOperands(); i < e; ++i) {
auto symName = cast<FlatSymbolRefAttr>(initialize.getSlotSymNames()[i]);
auto initialValue = initialize.getOperand(i);
auto globalSlotOp = symbolTable.lookup<GlobalSlotOp>(symName.getValue());
if (!isValidSubtype(initialValue.getType(), globalSlotOp.getTypeBound())) {
return initialize.emitOpError().append(
"initial value for global slot ", symName, " has type ",
initialValue.getType(), " which is not within the bound ",
globalSlotOp.getTypeBound());
}
}
auto walkResult = getOperation()->walk([](Operation *op) {
// We only permit a small set of ops in the module initializer.
// These ops are essentially those which can be produced by the IValue
// importer.
if (op->hasTrait<mlir::torch::Torch::OpTrait::AllowedInModuleInitializer>())
return WalkResult::advance();
op->emitOpError() << "is not allowed in a module initializer";
return WalkResult::interrupt();
});
if (walkResult.wasInterrupted())
return failure();
return success();
}
//===----------------------------------------------------------------------===//
// InitializeGlobalSlotsOp
//===----------------------------------------------------------------------===//
ParseResult InitializeGlobalSlotsOp::parse(OpAsmParser &parser,
OperationState &result) {
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
if (parser.parseLSquare())
return failure();
SmallVector<Attribute> slotSymNames;
while (!succeeded(parser.parseOptionalRSquare())) {
NamedAttrList dummy;
StringAttr slotSymName;
if (parser.parseSymbolName(slotSymName, "dummy", dummy))
return failure();
slotSymNames.push_back(FlatSymbolRefAttr::get(slotSymName));
if (parser.parseLParen())
return failure();
OpAsmParser::UnresolvedOperand initialValue;
if (parser.parseOperand(initialValue))
return failure();
Type initialValueType;
if (parser.parseColonType(initialValueType))
return failure();
if (parser.parseRParen())
return failure();
if (parser.resolveOperand(initialValue, initialValueType, result.operands))
return failure();
}
result.addAttribute("slotSymNames",
ArrayAttr::get(parser.getContext(), slotSymNames));
return success();
}
void InitializeGlobalSlotsOp::print(OpAsmPrinter &p) {
p.printOptionalAttrDict(getOperation()->getAttrs(),
/*elidedAttrs=*/{"slotSymNames"});
p << " [";
p.printNewline();
for (int i = 0, e = getNumOperands(); i < e; ++i) {
p << " " << getSlotSymNames()[i] << "(" << getInitialValues()[i] << " : "
<< getInitialValues()[i].getType() << ")";
p.printNewline();
}
p << "]";
}
LogicalResult InitializeGlobalSlotsOp::verify() {
if (getInitialValues().size() != getSlotSymNames().size())
return emitOpError("expected number of operands to match number of slots");
return success();
}