torch-mlir/e2e_testing/torchscript/vision_models.py

128 lines
3.7 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
# Also available under a BSD-style license. See LICENSE.
import torch
import torchvision.models as models
from torch_mlir_e2e_test.torchscript.framework import TestUtils
from torch_mlir_e2e_test.torchscript.registry import register_test_case
from torch_mlir_e2e_test.torchscript.annotations import annotate_args, export
# ==============================================================================
class ResNet18Module(torch.nn.Module):
def __init__(self):
super().__init__()
# Reset seed to make model deterministic.
torch.manual_seed(0)
self.resnet = models.resnet18()
self.train(False)
@export
@annotate_args([
None,
([-1, 3, -1, -1], torch.float32, True),
])
def forward(self, img):
return self.resnet.forward(img)
@register_test_case(module_factory=lambda: ResNet18Module())
def ResNet18Module_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 3, 224, 224))
class ResNet18StaticModule(torch.nn.Module):
def __init__(self):
super().__init__()
# Reset seed to make model deterministic.
torch.manual_seed(0)
self.resnet = models.resnet18()
self.train(False)
@export
@annotate_args([
None,
([1, 3, 224, 224], torch.float32, True),
])
def forward(self, img):
return self.resnet.forward(img)
@register_test_case(module_factory=lambda: ResNet18StaticModule())
def ResNet18StaticModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 3, 224, 224))
class IouOfModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([-1, -1], torch.float32, True),
([-1, -1], torch.float32, True),
])
def forward(self, bbox1, bbox2):
area1 = (bbox1[:, 2] - bbox1[:, 0]) * (bbox1[:, 3] - bbox1[:, 1])
area2 = (bbox2[:, 2] - bbox2[:, 0]) * (bbox2[:, 3] - bbox2[:, 1])
lt = torch.maximum(bbox1[:, :2], bbox2[:, :2])
rb = torch.minimum(bbox1[:, 2:], bbox2[:, 2:])
overlap_coord = (rb - lt).clip(0)
overlap = overlap_coord[:, 0] * overlap_coord[:, 1]
union = area1 + area2 - overlap
return overlap / union
@register_test_case(module_factory=lambda: IouOfModule())
def IouOfModule_basic(module, tu: TestUtils):
module.forward(tu.rand(1024, 4), tu.rand(1024, 4))
class MobilenetV2Module(torch.nn.Module):
def __init__(self):
super().__init__()
# Reset seed to make model deterministic.
torch.manual_seed(0)
self.mobilenetv2 = models.mobilenet_v2()
self.train(False)
@export
@annotate_args([
None,
([-1, 3, -1, -1], torch.float32, True),
])
def forward(self, img):
return self.mobilenetv2.forward(img)
@register_test_case(module_factory=lambda: MobilenetV2Module())
def MobilenetV2Module_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 3, 224, 224))
class MobilenetV3Module(torch.nn.Module):
def __init__(self):
super().__init__()
# Reset seed to make model deterministic.
torch.manual_seed(0)
self.mobilenetv3 = models.mobilenet_v3_small()
self.train(False)
@export
@annotate_args([
None,
([-1, 3, -1, -1], torch.float32, True),
])
def forward(self, img):
return self.mobilenetv3.forward(img)
@register_test_case(module_factory=lambda: MobilenetV3Module())
def MobilenetV3Module_basic(module, tu: TestUtils):
module.forward(tu.rand(1, 3, 224, 224))