torch-mlir/python/npcomp/tracing/emitters.py

279 lines
9.2 KiB
Python

# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
import numpy as np
from collections import namedtuple
from enum import Enum
class Protocol(Enum):
UFUNC = 1
ARRAY_FUNC = 2
class TraceValueType(Enum):
NDARRAY = 1
class TraceValue(
namedtuple("TraceValue", ["value", "type"],
defaults=(TraceValueType.NDARRAY,))):
__slots__ = ()
"""A Python value and the trace type that it should correspond to."""
class TraceInvocation(
namedtuple("TraceInvocation", ["inputs", "kwargs", "protocol", "method"],
defaults=(Protocol.ARRAY_FUNC, "__call__"))):
"""An invocation of a single functions.
This abstracts over both ufuncs and array_funcs, differentiating by the
protocol and method.
"""
__slots__ = ()
class EmissionRequest(
namedtuple("EmissionRequest",
["input_ssa_values", "dialect_helper", "extra"],
defaults=(None,))):
"""Represents the result of processing inputs from an invocation.
The `input_ssa_values` are mlir.ir.Value instances corresponding to
input_trace_values in TraceValueMap.
The `extra` value is only relevant to the producer and can be used as a
blackbox mechanism to transfer un-tracked state from an invocation to
emission.
The `dialect_helper` fields correspond to mlir.ir.DialectHelper.
"""
__slots__ = ()
class TraceValueMap(
namedtuple("TraceValueMap",
["input_trace_values", "result_trace_value_types", "extra"],
defaults=(None,))):
"""The result of mapping an invocation to corresponding op structure.
This type associates:
- Python (object, TraceValueType) representing invocation inputs that
correspond to SSA values in the IR.
- TraceValueTypes that are the expected logical result types from the
invocation.
- 'extra' object that is passed to followon Emitter methods.
"""
__slots__ = ()
class FuncEmitter:
"""An emitter for an op-like function invocation."""
def map_invocation(self, trace_invocation: TraceInvocation) -> TraceValueMap:
"""Maps from an invocation to EmissionRequest.
This hook is also responsible for validating the invocation and should
raise appropriate user-visible exceptions (i.e. when invoked with incorrect
arguments).
This hook is used to prepare for emission in a define-by-run scenario.
Static emission from an AST needs to be prepared via another mechanism.
Args:
trace_invocation: An Invocation instance to map.
Returns:
A TraceValueMap describing the structure of the invocation as mapped
to/from IR.
"""
raise NotImplementedError()
def map_results(self, py_results, extra):
"""Maps a list of python results to actual function return values.
Args:
py_results: List of python results corresponding to the emitted op
results.
extra: The extra object returned by map_invocation.
Returns:
Actual function result. Typically this requires special handling to
unpack the result of functions that return 1 item.
"""
raise NotImplementedError()
def emit(self, request: EmissionRequest):
"""Emits IR using the provided ops and types factories.
Args:
emission_inputs: An EmissionRequest produced by tracing each TraceValue
from a previous call to map_invocation and the corresponding extra
value.
Returns:
An iterable of mlir.ir.Value instances representing the outputs of the
operation. The `builder` on `ops` must be positioned to consume these
values.
"""
raise NotImplementedError()
class GenericCallUfuncEmitter(FuncEmitter):
"""A FuncEmitter for generic ufuncs requiring no special behavior.
Representation:
>>> emitter = GenericCallUfuncEmitter("numpy.add")
>>> emitter
<ufunc emitter 'numpy.add'>
>>> inv = TraceInvocation([1, 2], {}, protocol=Protocol.UFUNC)
>>> inputs = emitter.map_invocation(inv)
>>> inputs
TraceValueMap(input_trace_values=[TraceValue(value=1, type=<TraceValueType.NDARRAY: 1>), TraceValue(value=2, type=<TraceValueType.NDARRAY: 1>)], result_trace_value_types=[<TraceValueType.NDARRAY: 1>], extra=None)
Error on unsupported kwargs:
>>> inv = TraceInvocation([1, 2], {"foobar": 1}, protocol=Protocol.UFUNC)
>>> emitter.map_invocation(inv)
Traceback (most recent call last):
...
ValueError: Unexpected keyword args for ufunc numpy.add: foobar
"""
__slots__ = ("_ufunc_name")
def __init__(self, ufunc_name: str):
self._ufunc_name = ufunc_name
def __repr__(self):
return "<ufunc emitter '%s'>" % self._ufunc_name
def map_invocation(self,
trace_invocation: TraceInvocation) -> EmissionRequest:
assert trace_invocation.protocol == Protocol.UFUNC
assert trace_invocation.method == "__call__"
if trace_invocation.kwargs:
raise ValueError(
"Unexpected keyword args for ufunc %s: %s" %
(self._ufunc_name, ", ".join(trace_invocation.kwargs.keys())))
# Without above special cases, any positional args map to emission
# inputs.
return TraceValueMap([
TraceValue(i, TraceValueType.NDARRAY) for i in trace_invocation.inputs
], [TraceValueType.NDARRAY],
extra=None)
def map_results(self, py_results, extra):
# Ufuncs always return one result, so just unpack it.
return py_results[0]
def emit(self, request: EmissionRequest):
h = request.dialect_helper
op_result_type = h.tensor_type(h.numpy_any_dtype)
call_op = h.numpy_ufunc_call_op(self._ufunc_name, op_result_type,
*request.input_ssa_values)
return call_op.results
class GenericArrayFuncEmitter(FuncEmitter):
"""Emitter for array funcs that don't do anything 'special'."""
__slots__ = ("_op_name", "_nresults")
def __init__(self, op_name: str, nresults: int = 1):
self._op_name = op_name
self._nresults = nresults
def __repr__(self):
return "<array_func emitter '%s'>" % self._op_name
def map_invocation(self,
trace_invocation: TraceInvocation) -> EmissionRequest:
assert trace_invocation.protocol == Protocol.ARRAY_FUNC
if trace_invocation.method != "__call__":
raise NotImplementedError("Only __call__ is supported for %s (got '%s')" %
(
self._op_name,
trace_invocation.method,
))
if trace_invocation.kwargs:
raise ValueError(
"Unexpected keyword args for %s: %s" %
(self._op_name, ", ".join(trace_invocation.kwargs.keys())))
# Without above special cases, any positional args map to emission
# inputs.
return TraceValueMap([
TraceValue(i, TraceValueType.NDARRAY) for i in trace_invocation.inputs
], [TraceValueType.NDARRAY] * self._nresults,
extra=None)
def map_results(self, py_results, extra):
if self._nresults == 1:
return py_results[0]
else:
return tuple(py_results)
def emit(self, request: EmissionRequest):
h = request.dialect_helper
op_result_types = [h.tensor_type(h.numpy_any_dtype)] * self._nresults
op = h.op(self._op_name, op_result_types, request.input_ssa_values)
return op.results
class EmitterRegistry:
"""Registry of known Emitter instances mapped to source function.
>>> r = EmitterRegistry.create_default()
>>> r.lookup_ufunc(np.add, "__call__")
<ufunc emitter 'numpy.add'>
>>> r.lookup_array_func(np.dot)
<array_func emitter 'numpy.dot'>
"""
def __init__(self):
self._ufunc_map = {} # Dictionary of (f, method) -> Emitter
self._arrayfunc_map = {} # Dictionary of f -> Emitter
@classmethod
def create_default(cls):
registry = cls()
registry.register_defaults()
return registry
def register_ufunc(self, ufunc, method, emitter):
# Last registration wins.
self._ufunc_map[(ufunc, method)] = emitter
def register_array_func(self, f, emitter):
# Last registration wins.
self._arrayfunc_map[f] = emitter
def lookup_ufunc(self, ufunc, method):
return self._ufunc_map.get((ufunc, method))
def lookup_array_func(self, f):
return self._arrayfunc_map.get(f)
def register_defaults(self):
# Find all ufuncs in the numpy module and register by name.
for member in sorted(dir(np)):
ufunc = getattr(np, member)
if isinstance(ufunc, np.ufunc):
self.register_ufunc(ufunc, "__call__",
GenericCallUfuncEmitter("numpy." + member))
# Register generic 1-result array funcs.
GENERIC_FUNCS = (
(np.inner, "numpy.inner"),
(np.outer, "numpy.outer"),
(np.dot, "numpy.dot"),
(np.vdot, "numpy.vdot"),
(np.linalg.det, "numpy.linalg.det"),
# TODO: This needs a custom implementation to differentiate when
# axes is specified (this version will fail).
(np.transpose, "numpy.transpose"),
)
for f, op_name in GENERIC_FUNCS:
self.register_array_func(f, GenericArrayFuncEmitter(op_name))
if __name__ == "__main__":
import doctest
doctest.testmod()